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Abstract

The nature of dark matter remains one of the most compelling open questions in
modern physics. Among the theoretically motivated candidates, the axion stands out
not only as a solution to the strong CP problem via the Peccei Quinn mechanism,
but also as a viable cold dark matter component. This thesis explores the axion both
from a theoretical and an experimental perspective, focusing on the development
and operation of the QUAX-LNF tunable haloscope, designed to search for galactic
axions through their coupling to photons in a resonant microwave cavity.

The first part of the thesis reviews the theoretical background, from the emergence of
the 6 term in the QCD Lagrangian and the strong CP problem, to the introduction
of axions and their parameter space as constrained by cosmology and astrophysics.
Particular attention is given to the electromagnetic interaction, which enables the
experimental detection via the Primakoff effect.

The second part of the thesis is dedicated to the description of the QUAX-LNF
apparatus, covering the RF design, cavity characterization, and cryogenic setup.
My contribution to the experiment includes calibration of the RF lines inside the
cryostat, the implementation of a fitting procedure for the scattering parameters,
and participation in the first data acquisition campaign.

No axion signal was observed in the explored mass range, but an exclusion limit was
established, contributing to the broader effort of mapping the viable axion parameter
space.
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Chapter 1

Introduction

T he 20th century witnessed a revolution in our understanding of the universe
in both the smallest and largest scales, the former culminated with the estab-
lishment of the Standard Model (SM) of particle physics while the latter with
ACDM model in cosmology.

With the 2012 discovery of the Higgs boson, every particle predicted by the SM
has been observed. There are however many reasons to believe the SM is not an
ultimate theory of nature and the most pressing comes from cosmology. The main
problem with the ACDM model is that we understand neither A, that stands for
Dark Energy, nor CDM that stands for Cold Dark Matter.

From cosmological observations there is now evidence that only 5% of the Universe
constituents is explained by ordinary matter. The rest is supposed to be composed
by Dark Matter (DM) for 25% and Dark Energy (DE). Our discussion follows DM
models.

The existence of dark matter, a non baryonic form of matter, is inferred from its
gravitational effects on ordinary matter. Observations indicate that our solar system
orbits the center of the galaxy at about 200 km/s and we are immersed into a DM
halo. Nevertheless it doesn’t seem to do very much on smaller scales, DM has not
been detected so far with particle physics experiment.

There are two Dark Matter models, Hot DM and Cold DM, meaning that particles
are relativistic or not, the latter is favoured because of Large scale structure obser-
vations. The evidence for Cold DM is the most precious for particle physics as it is
directly attributable to the existence of new species of particles.

In the context of theories of new physics beyond the Standard Model many new
particles emerge, one of the first suitable model arised from Supersymmetry that
predicts particles that can be included in the category of WIMPs (Weakly Inter-
acting Massive Particles) and had great interest thanks to the WIMP miracle[1].
No detection has been claimed in this high energy landscape so increasingly resources
are being invested in other models like WISPs, Weakly Interacting Subelec-
tronvolt Particles, that arise when global symmetries in SM are spontaneously
broken. Among these there are axions and Axion-Like Particles (ALPs).

In this framework the QCD axion, a hypothetical spin 0 particle predicted by the
Peccei-Quinn mechanism [2,3] to solve dynamically the so-called strong CP problem,
is the best motivated candidate of DM. As we shall see in Chapter 2, the QCD
lagrangian admits an additional term that violates the CP symmetry, but this
violation is not seen in strong interactions. The violation of CP symmetry is a
subject of great theoretical interest because there is substantially more matter than
antimatter in the observable universe today, yet the known laws of physics are mostly
CP symmetric. Nonetheless in the theory of QCD we have precisely the opposite



problem.

The value of the parameter responsible for this violation, @, is constrained to be
< 1071° from experiments [4] while it is theoretically expected to be of order one
on naturalness grounds. In fact, 6 arises as the sum of two independent parameters
coming from two independent physics sectors: QCD and electroweak theory. it
appears so that strong CP violation is “accidentally” suppressed because the additive
contributions to @ happen to be equal and opposite to better than one part in ten
billion.

The axion was identified by Weinberg [5] and Wilczek [6] as the pseudo Goldstone
boson of a new spontaneously broken global symmetry that Peccei and Quinn had
postulated. Axions are strongly related to mesons and indeed would mix with them
obtaining a mass and featuring couplings to hadrons and two photons, Both coupling
constants and mass are inversely proportional to a free parameter of the theory, f,,
that represents the energy scale at which the Peccei-Quinn U(1) symmetry is broken,
so neither the couplings nor the mass can be a priori specified.

Within a few years theorists realized that if m, were much smaller than the initial
formulation of the PQ mechanism assumed, axions would interact very weakly with
SM particles, and moreover they would be produced copiously in the early universe.
For this motivations light axions can constitute dark matter and this is the reason
for their name: they are named after a laundry detergent, since axions have the
capability to "clean up" both the strong CP and DM problems.

We have reason to believe that dark matter is all around us all the time so we shall
detect it to constrain both mass and coupling. In 1983 Sikivie [7] proposed two
detection techniques, both relying on axion-photons coupling through the Primakoff
process[8]: the axion helioscope to detect the copious flux of axions emitted from
the Sun and the axion haloscope to detect axions from the hypothetical DM
galactic halo.

In Chapter 3 I will present the main physical principles on which haloscope experi-
ments are based, such as radiofrequency and resonant microwave cavities, then the
QUAX experiment is described, whose acronym stands for ‘QUest for AXions’. The
experiment is funded by INFN, is situated at LNF (Laboratori Nazionali di
Frascati) and LNL (Laboratori Nazionali di Legnaro) and I had the opportu-
nity to witness the real first run of the QUAX-LNF tunable haloscope [9].

During my thesis I contributed to the experimental setup, to the data acquisition
and to part of the data analysis, joining the team working in the COLD laboratory
(CryOgenic Laboratory for Detectors). Chapter 4 is indeed dedicated mainly
to my thesis work, on how the radiofrequency concepts are used to exploit the
calibration of lines inside the cryostat. In conclusion I will present the search for
signals and finally the exclusion plot for axion mass and coupling.



Chapter 2

The physics problem and Axions
as solution

2.1 Hints from theory

The formulation of this new scalar field, the axion, starts from a problem in the

low energy landscape of Standard Model. In the chiral limit the quarks present
some approximate symmetries. Thanks to electroweak symmetry breaking (EWSB)
fermions acquire mass and this lead to a problem if one consider an axial symmetry
U(1)4 for the system: This brings to predict a wrong mass for the 1’ meson in the 3
quarks model.
The U(1)4 problem is automatically resolved if one looks at the nontrivial QCD
vacuum structure, but the story didn’t end here. A new term with a § parameter
appears in the QCD lagrangian that violates CP symmetry in QCD interactions.
This would induce an Electric Dipole Moment (EDM) for the neutron, which has
not been observed experimentally. This experimental constraint imply a fine-tuning
problem that in turn is resolved by Peccei and Quinn mechanisim introducing a new
axial symmetry U(1)pg which promotes the parameter 6 to a dynamical field. Two
nice introduction to the axion formulation are given in [10,11]

2.1.1 Symmetries and chiral limit

Let’s begin with the two quark model, in the chiral limit QCD acquires a
global SU(2)V x SU(2)a x U(1)y x U(1) 4 symmetry. A global vector U(1)y
transformation is a phase transformation that rotates the left and right-handed fields
in the same sense: ' '

qL — € "*qL qr — ¢ "“qr (2.1)
while a global axial U(1)4 transformation causes the fields to rotate in the opposite
sense: ' '

qr — € "“qr qr — €'“qR (2.2)
An SU(2) transformation operates in an analogous way when distinguishing between
vector and axial, although it is just a little more complicated and involves a doublet
of fields, therefore considering as an example a doublet of u and d quarks [12]:

(Z) L pmienon/2 (z) (2.3)

where k = 1,2, 3, ¢, are parameters and oy, the three generators of SU(2) group
transformations, note that this transformations mix the quark flavors.
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To show why they are symmetries, let’s look at the QCD gauge invariant Lagrangian
density for only one quark flavor [13]:

. . _ _ 1
Loep = arin" Duqr + Trin" Duar — aymar — dpmar — 3G GR (2.4)

with D, the covariant derivative and G, a the gluon field strength tensor:
GHY = 0" AY — OV Al + gs fapc A} AL (2.5)

where A# is the gluon vector field, a,b,c =1, ...,8 are indexes for the gauge fields,
fabe the structure constants of SU(3)., and gs the coupling constant of strong
interactions.

It is then sufficient only to look at the mass term in the Lagrangian of Eq. (2.4):

—m(qLqr + Trar) (2.6)

o U(1l)y is an exact symmetry in any case and implies baryon number conser-
vation [14], this symmetry implies that we should observe anti-baryons with
exactly the same mass as the corresponding baryons but opposite charge, and
indeed we do.

e SU(2)y maintain mass terms invariant, but it is indeed necessary to keep the
quark masses to zero to make it a symmetry, because v and d are part of a
doublet and therefore they must have the same quantum numbers, including
mass. This symmetry implies that we should observe doublets of hadrons
with almost the same mass (experimental mass of u and d is not equal) whose
strong force interactions are identical. This symmetry is known as the nuclear
isospin symmetry and the most obvious such doublet comprises the proton
(mp = 938.3 MeV) and neutron (m, = 939.6 MeV).

o SU(2)4 is only a symmetry in the massless limit and implies the existence of
another doublet of particles nearly degenerate in mass but with opposite parity,
we do not observe such particles so it has to be somehow broken together with
U(1) 4. Generally axial symmetries only exist in the massless limit, for this
reason the massless limit is also called the chiral limit.

If the axial symmetries are spontaneously broken, we should expect three Goldstone
bosons corresponding to the generators of SU(2) 4 along with a fourth Goldstone
boson from U(1)4 [12]. Because these symmetries are chiral, all four Goldstone
bosons will be pseudoscalar fields which are odd with respect to parity.

In the hadron spectrum there exist a triplet of particles with odd parity: the pion
triplet, 70 and 7% with m_ o = 135 MeV, m,+ = 140 MeV, they are not much
smaller with respect to Agcp but they are the lightest mesons and their masses go
to zero as my, my going to zero, so they can be thought of as the pseudo Goldstone
bosons of the group. In this 2-flavor model the pseudo-Goldstone boson associated
with U(1)4 would be instead the pseudoscalar n meson. If the s quark didn’t
exist, it would have a mass smaller than it actually is (m, ~ 548 MeV). Besides
if this model is incomplete because the absence of s quark, there is evidence that
the approximate SU(2)4 and U(1)4 symmetries of the strong interactions of light
quarks are spontaneously broken in the hadronic phase.

If we now extend our model to the 3-flavor case, QCD possesses a global SU(3)y x
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SU3)a x U(1)y x U(1) o4 symmetry, then by breaking the axial symmetries, eight
pseudo Goldstone bosons from SU(3)4 and one from U(1)4 are expected. The
pseudoscalar singlet 77/ meson and the pseudoscalar octet comprising the three
pions, the four kaons and the n meson are the candidates we are looking for. All the
mesons aside 77/ still have masses small enough to play the role of pseudo-Goldstone
bosons, the problem here is that m, ~ 958 MeV is much higher compared to Agcp.
This is in contrast with the work of Steven Weinberg too [15], who pointed out that
in this 3-flavor model the pseudo-Goldstone boson associated to the U(1)4 broken
symmetry should have a mass:

M, < V3mg ~ 240 MeV. (2.7)

The essence of the U(1)4 problem resides here, why is the observed m, meson so
much heavier?

2.1.2 Solution to the U(1)4 problem

The solution at this problem can be summarized observing that the expected
pseudo-Goldstone boson doesn’t exist because there is no U(1)4 symmetry at all,
and this declaration is made possible if one exploit chiral anomalies, the nontrivial
topology of the QCD vacuum and their relationship [16].

Even before the U(1)4 problem it was already well established that global U(1) 4
symmetries were anomalous, anamalous in the sense that is a symmetry of the
classical Lagrangian but is violated in the corresponding quantum theory. However
the solution comes down to a distinction between the behavior of Abelian and
non-Abelian gauge theories and this lead us toward the strong CP problem.

In classical field theories, Noether’s theorem states that each symmetry of a
Lagrangian has associated to it a conserved current J* in the sense that:

9 J" =0 (2.8)

is the continuity equation that implies a conserved charge defined as:

Q= /d%JU. (2.9)

In most cases this procedure works for the quantum theory too in which the fields
are promoted to operators. But if the classical theory includes at least one fermion
which transforms under a global U(1)4 symmetry and is coupled to gauge fields A#,
Eq. (2.8) does not hold in the quantum theory, infact U(1)4 current obeys:

g2
3272

Ol = F' Fg (2.10)
where g is the gauge coupling, F/* is the gauge field strength tensor that we wrote
explicity for the gluon field in Eq. (2.5) and

~ 1
Fluva = §€MyaﬁFgﬂ (2.11)

is its dual, where €., is the Levi-Civita symbol, antisymmetric in all indices.
Eq. (2.10) is the formal statement of the chiral anomaly [13, 14]: If the fermion
that transforms under U(1)4 is coupled to more than one gauge group, there will be
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one term of Eq. (2.10) for each gauge symmetry. Moreover if there are N fermions
with U(1) 4 symmetries coupled to a particular gauge group, the corresponding term
should be multiplied by N.

Since 9,,J% # 0, it is evident that the axial current is actually not conserved, because
of the effect of the chiral anomaly. Therefore U(1)4 symmetry is automatically
broken (actually is not a simmetry at all): this implies that we don’t need a
pseudo-Goldstone boson in the hadron spectrum anymore and the arguments of
Weinberg on the ' mass become irrelevant.

Furthermore Eq. (2.10) implies that a U(1)4 transformation on a single fermion
field with parameter a does not leave the Lagrangian invariant, but instead adds a
term of the form:

g2

1672

We did not include such terms in the original Lagrangian because they are a total
derivative, thus they correspond to surface terms which can only contribute to the
action at the boundaries of the spacetime volume, where any reasonable field ought
to vanish, but chiral anomalies can cause them to appear anyway.

While everything may seem to follow a linear path, the full picture has yet to emerge:
we need to talk about the nontrivial topology of the QCD vacuum and in doing
so let’s introduce the so called 6 terms in SM that are formally equivalent to Eq.
(2.12), with parameters 0y, 6w , and 8gep in place of « for the corresponding
gauge symmetry [17]. Let’s anticipate here that the presence of the antisymmetric
Levi-Civita symbol implies that 6 terms violate P and T symmetries (thus they also
violate CP by the CPT theorem). The reason we did not include 6 terms in the
Lagrangian is that each 6 term is a total derivative.

It can been shown that for a U(1) 4 current which is not conserved due to an anomaly
with QED, is still possible to construct a conserved charge Q in the sense that there
are no observable effects due to surface terms [18]. However, it turns out that surface
terms can have observable effects in non Abelian gauge theories.

In the general case of non Abelian gauge theories the surface terms from Eq. (2.12)
become €05 FOP = 01K, where:

6L = aF™ Fup. (2.12)

K= o (ALF" = § e A203.47) (2.13)

The main problem resides here, the gauge fields A% of QCD appearing in K* do not
all tend to zero simultaneously at infinity, therefore the surface integral of K* does
not cancel. Non Abelian gauge theory gets very complicated, here I will present only
the key passages but more details can be found in Refs. [13, 14].

The discussion can be simplified by restricting our focus to vacuum field config-
urations: a trivial example of a vacuum field configuration is A# = 0, but gauge
invariance implies that there are infinitely many others related to the trivial case by
gauge transformations. It turns out that it is not possible to smoothly transform
each vacuum configuration into another, each vacuum is classified by an integer
number n, called winding number, and all of them are separated by energy barriers.
The vacua are then indicated by |n) and for each n a different expression of the
fields exists. For instance, the solution with n = 1 is called instanton, while n = 0
corresponds to A = 0.

Belavin et al. [19] first noted that non-Abelian gauge theory permits vacuum field
configurations for which the surface integral of Eq. (2.13) is nonvanishing, they
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showed that there exist vacuum field configurations with:

2
3g7r2 / dTOK, = n. (2.14)
't Hooft [20] was the first to point out that the integral of Eq. (2.14) is just the volume
integral of Eq. (2.10), and a nonzero value implies that the charge corresponding to
J'} is not conserved, so it can be claimed that instantons and other field configurations
with n # 0 resolve the U(1)4 problem.

It is though possible the quantum tunnelling between different vacua with different
winding numbers: the transition amplitude from two vacua is not negligible, so it is
preferable to define a true vacuum that possibly remains fixed. We want the true
vacuum to be invariant under the "tunnelling" operator that acts as:

U |n) = In+ k) (2.15)
this request is satisfied if we define a superposition of all the vacua, called # vacuum,

such as: .
0) =3 e n). (2.16)

If now one evaluate the transistion probability from one # vacuum to another 6 it is
possible to find [14]:

M,y ~ 80 — ) (570 (2.17)

where S is the action. The Dirac delta function enforces the absence of tunneling
between distinct € vacua, consistently with the physical expectation.

The interesting part is the factor containing the winding number: it can be see that
from Eq. (2.14), using the definition of 0" K, from Eq. (2.13), in a theory in which
the true QCD vacuum state is |fgcp) there is a contribution to the Lagrangian of
the form we have predicted in Eq. (2.12):

2

g ~
Ly = 32;2 00cpGh G uva (2.18)

where now I explicited the fact that we are talking about quark and gluons: G,
is the gluon field strength tensor and g2 is the coupling of the strong interaction.
Thus we see that the solution to the U(1)4 problem implies the existence of a QCD
0 term and as we anticipated this kind of terms violate CP simmetry: we have now
the strong CP problem to deal with.

2.1.3 Strong CP problem

In the previous subsection we showed that non-Abelian gauge theories permit
field configurations with nonvanishing surface terms, and then went on to show that
in such theories the 6 parameter from the 6 term in SM has a physical interpretation
as the parameter describing the true gauge vacuum state. The resolution of the
U(1) 4 problem therefore, required us to recognize the existence of non-Abelian
gauge vacua other than |n = 0), but does not give us any hint to the value of Ogcp.
Nevertheless what is important is that any nonzero 6gcp produces an electric dipole
moment (EDM) for the neutron, and the non observation of the neutron EDM
implies that fgcp must be extremely small. This is the essence of the strong CP
problem, but there is also more to deal with.

It turns out that in the SM the strong CP problem actually cannot be resolved
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by QCD alone: quarks are charged under both QCD and the electroweak gauge
group. It is instructive to point out what is the variation of fgcp under an axial
transformation: for Ny flavors of massless quarks the U(1)4 is anomalous and we
have new contribution to the lagrangian as in Eq. (2.12); this term adds to the
focp one, causing him to shift:

GQCD — HQCD — 2Nf0£. (2.19)

This means that if only 6gcp contributed to CP violation, by an appropriate choice
of the parameter «, we could make 6gcp = 0, however the electroweak sector
contribute too and as we know fermions acquire mass thanks to the electroweak
symmetry breaking via Higgs mechanism.

In order to see where a contribution from Electroweak can rise, we can look at
Yukawa type interactions between Higgs fields and quarks which are renormaliz-
able and invariant under the full SM gauge group, they have this form [14]:

Ly ukawa = _yd(@L : ¢)dR - zyu(@L ’ 02¢*)uR + h.c. (220)

where ¢ is the Higgs doublet, Qr = (ur,dy)” is the left-handed quark doublet,
ur and dp are right-handed up and down quarks, ¥y, and y, are Yukawa coupling
constants, and o9 is the second Pauli matrix. After EWSB, we can replace the Higgs
doublet with its vacuum expectation value < ¢ >= %(0, v)T:

1 - 1
Ly ukawa = _ﬁydvdeR — \ﬁyuvﬂLuR + h.c. (2.21)

Thus below the electroweak scale the previously independent left and right chiral
down quark fields are mixed together and down quark acquire mass mg = yqv/v/2
while for up quark m, = y,v/v/2.

For our purposes we have to generalize Eq. (2.21), the other two generations of
fermions are essentially copies of the first as they have all the same quantum numbers
under the SM gauge groups. Consequently v, and y4 should actually be replaced
with 3 x 3 matrices Y, and Y, that sit between the 3 quark generations. This
matricies are not diagonal or hermitian, but can be diagonalized through unitary
matrices U and W, which can be in turn absorbed into the definition of the left- and
right-handed quark fields respectively: this is the mass basis in which Eq. (2.21)
looks like a proper mass term. The transformations we used are a combination of
vector U(1)y and axial U(1)4 rotations, but these axial phase rotations as we know
are anomalous so it will generate an additive contribution to gcp of the form [21]:

Opw = arg {det (YdYu)]. (2.22)

Consequently the Lagrangian that has physical observable effects is of the form:
2

9s 5 VA
Lep= 532506 Gl (2.23)

where @ has contributions from both QCD and EW:

0=0gcp — Opw. (2.24)

It’s important to underline that this is an additional contribution to the CP
violation in the SM, alongside to the phase dcxas of the CKM matrix, responsible
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for the kaon and B oscillations. Therefore in the absence of massless quarks, the
strong CP problem is real, and it has turned out to be a problem of the full SM
rather than just the strong force.

As said in the beginning, an additional lagrangian term like Eq. (2.23) produces
an electric dipole moment for the neutron that has been calculated in Ref. [22]. Is
proportional to @ and it is estimated to be:

dp ~24%x107%0ecm (2.25)

where e is the fundamental electric charge. In the article, with the experimental
bound of those times, it was estimated an upper limit on the theta parameter of
0] < 3 x 1071, From the most recent experiment on neutron EDM instead, it was
set a most stringent upper limit of about [4]:

0] < 0.67 x 10719, (2.26)

This is an extrimely small value considering that we have two contributions from
two independent sectors: there are no reasons for gcp and O to tune exactly
to zero when they are summed. There is no way for the two parameters to “know”
about each other, we need therefore to look beyond the SM for a solution to the
strong CP problem.

2.2 Axions

Theorists came out mostly with 3 solutions to the strong CP problem [17]:

e The presence of a massless quark, for example the v quark, that will allow
us to do the procedure described by Eq. (2.19) and gauge away by a phase
rotation gcp, because Oy term wouldn’t be present. But as exposed in the
previuous section, this hypotesis is ruled out by experiment, since there is no
evidence of massless quarks.

e A spontaneous CP violation, in the sense that it exists in the Standard
Model a more general CP symmetry that would be in turn spontaneously
broken, allowing for CP violation. This is ruled out by experiment too, since
experimental data is in excellent agreement with a CP violation due to the
CKM matrix.

e The Peccei Quinn mechanism, discussed in this thesis, in which an addi-
tional U(1)4 symmetry is assumed in the theory. The axion emerge here, it
would be an additional pseudo-Goldstone boson from the simmetry breaking.

As said so, the PQ mechanism will be presented and this lead us to 3 theoretical
models: PQWW, KSVZ, DFSZ. The meaning of this 3 acronyms will be presented
further in the reading along with Axion main parameters such as his mass and
his coupling with different fields. The value of this two parameters doesn’t have
hints from theory, then it will be presented the axion parameter space with all the
experiments and bounds imposed by Astrophysics and Cosmology.

2.2.1 Peccei-Quinn mechanism

This solution was proposed by R. Peccei and H. Quinn in two papers in 1977
[2,3]. The idea in the end is that of gauge away fgcp more or less as we suggested
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in Eq. (2.19). In doing so, they suggested to introduce a further exact axial
global U(1) symmetry, now called U(1)pg symmetry, by adding a scalar field.
Therefore if this is spontaneously broken and has a chiral anomaly, we will have an
additional term in the lagrangian as Eq. (2.12) that can absorb the 6 term. In 1978,
Weinberg [5] and Wilczek [6], pointed out that adding this scalar field which couses
the simmetry breaking, would generate a new Goldstone boson: the axion.

In exploiting the mechanism, it’s enough to consider only one quark flavor and a
new scalar complex field o. As said in subsection 2.1.1, a mass term for the quark
is not invariant under U(1)4 rotations, so we start again with yukawa coupling like
Eq. (2.20). However let’s consider now only one quark flavor and the o field despite
of the Higgs doublet:

£Yukawa = _y(qLO-QR + QRU*QL) (227)

where the o field has a lagrangian:
1 pox 22 Ay
Lo = 5@08 of — ulo|* — Z|a| (2.28)

supponing that the potential has a minimum at |o| = f,. If we apply an axial U(1)
transformation to the quarks they rotate like Eq. (2.2), then we need that o changes
as 0 — e 2% if we want the lagrangian to be invariant.

If the scalar field satisfies this additional condition, U(1)pq is though an exact global
symmetry that has in turn to be broken to generate the quark mass. In the spirit of
SSB we expand ¢ around its minimum:

o(z) = (p(x) + f,)e /e (2.29)

where p(z) and a(z) are two real fields: thanks to it the lagrangian acquire the
quark mass term along with kinetic and potential terms for the two real field. The p
field plays the role of the Higgs boson in the EWSSB, while the axion a is supposed
to be the massless Goldstone boson.

The key point here is that U(1)pg present a chiral anomaly and as we know this
causes the lagrangian to acquire anothere CP violating term like Eq. (2.12). We can
substitute the a parameter with a/f, by noticing that if we apply a U(1) rotation
to the o field, the axion field undergoes this transformation:

a—a+af, (2.30)

If we underline only the terms of our interest, the final lagrangian takes the following
final form [16]:

Qs a

e e (2.31
SﬂfaGaGu ( 3)

1 R
L= Lq+Lot50,00"a+Lint[0"(a/f,); )+ ;iw G e+

where L;,; contains interactions between quark and axion, and is used oy = %. The
last term it’s the one we are interested in, it can be seen as a potential V¢ and has
two conseguences: can solve the strong CP problem and give rise to an axion mass.
As we anticipated, in solving the CP problem, # can be absorbed and we fullfill this
task by redifining the potential term, or equivalently, the axion field. Since 6 term
has the same structure as the potential, we can consider them as one single term,
later on we can impose that this potential has a minimum when calculated in the

vacuum, explicitly <8V€f L) =0, so in the end it can be found [3]:

da
(a) = 7f, (2.32)
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and in this sense the axion field @ is the dynamical version of #. We can also define
a physical axion field with null vacuum expectation value, given as apnys = a — (a).
As said so, an axion mass can rise from Vcss: this term infact explicity breaks
U(1)pg, it can be interpreted as a tilt of the wine-bottle-shaped potential, typical of
a toy model of SSB for one complex scalar field [10], along a certain direction. The
axion therefore rolls towards the new tilted minimum and oscillates around that,
acquiring a mass that can be calculated from Ve :

*V,
m§:< 5 2ff> . (2.33)
@ =01,

We can now rewrite the lagrangian considering a,pys consideration and adding the
mass term we have discussed:

1 1 Qs App ~
£ = 5 0uapnys0" aphys — ngaghys - 87 ’}ys GY G (2.34)
a

where i omitted Ly, L5, Lis and where now we have the usual mass term beside an
interaction between the axion and the gluons. The strong CP problem is therefore
solved: when axion excitations are not present appys is zero and the classical potential
is minimized at zero, while when a,p,ys is present, a CP violation term follows. The
key interpretation here is that when we consider for a long time interval observable
quantities depending on appys, like neutron EDM, they are averaged to zero and the
CP violation is not seen.

Now is important to extend this mechanism to the whole standard model, the more
immediate extention is the PQWW one that follows from Peccei, Quinn, Weinberg
and Wilczek. We will later on refer to apnys simply by writing a.

PQ mechanism requires at least one quark ¢ and one complex scalar field o, on the
contrary SM ontains many quarks and we saw how they acquire mass via EWSSB:
identifying ¢ with the Higgs doublet ¢ would be the most immediate extension of
our model. Nonetheless we have an impediment, our lagrangian have to be invariant
under all SM gauge groups: this is fullfilled only if ¢ appears in the term that
gives mass to down-type quarks and ¢* for the up-type, as we wrote in Eq. (2.20).
However ¢ and ¢* transform differently under U(1)pg and the necessary condition
to make the lagrangian invariant falls. Peccei and Quinn thus extended the Higgs
sector of the SM to include two Higgs doublets, ¢; that couples to up-type quarks
and ¢y to down-type, having transformations that preserve U(1)p¢ invariance.
The two Higgs doublets in the PQWW model have two different vacuum expectation

values vy and vg, f, = \/v? + 03 is a free parameter of the theory and in this model

is identified with the electroweak scale v = 246 GeV.

The axion mass has been calculated with effective Lagrangian techniques, what is
important here is that in this calculations mixing terms with neutral pions and
7 mesons arise. These are responsible for generating the axion mass term but also
allow the axion to have interactions with two photons: a very useful property
that will be exploited to design an experimental approach to the axion detection.
Its mass is given by [13, 14]:

1
mPAVW — N, (a; + x) —m’;f TV (2.35)
U d

where Ny = 3 is the number of fermion generations and x = va/v; is the only free
parameter of the PQWW model: if we plug in number we obtein approximatly
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mPOWW > 150 keV with a minimum value of mZ@WW ~ 25 keV for z = 1.
As stated before, this model lead to a coupling with 2 photons too:

o 1 My,
—FWF“ i Kayy = Ny (a: + ) —_— (2.36)

T ) my + mg

with ey, = €2 /4w the fine structure constant of QED in natural units and F),, the
electromagnetic field strength tensor.

This model of high energy mass axion has however been ruled out by Kaons decay
experiment [23]. Experimental evidences of this type recall that perhaps theories
in which f, > v are more reliable, and since axion mass and coupling are inversely
proportional to f4 we are conducted towards light axions very weakly coupled to
SM particles. These are called invisible axion models, we will briefly discuss only
two of them:

o From Kim [24] and Shifman, Vainshtein, Zakharov [25] the KSVZ model in
which only a complex scalar field o and a single heavy quark (mg o f,) are
added to the SM, with the energy breaking scale f, > v. The mass term has
the same form as in the PQWW model, but is rescaled with the new f, value:

o = (JZ)meWW' (2.37)

The peculiarity of this model is that the axion doesn’t interact with leptons.

o From Zhitnitsky [26] and Dine, Fischler, Srednicki [27] the DFSZ model that
is an exstention of the PQWW one: beside the Higgs doublets, a complex
scalar field ¢ is added too. Here all the interaction exploited in the PQWW
model are manteined but the mass has the same expression as in Eq. (2.37),
where now instead f, = (o).

This was just an overview to the theoretical problem and to the axion formulation,
to give an idea about the motivation that push this experimental field of Physics
and to introduce some useful concepts that we will need when we are going to
talk about experimental approaches. There is a lot more to talk about this models
we introduced and there are many other models that predict axions with different
masses and couplings[1].

2.2.2 Parameter space

If axions constitute Dark Matter, their electromagnetic interactions may be

observable in a sufficiently sensitive laboratory-scale detector. As said the most
important fundamental parameter in any invisible axion model is the PQ sym-
metry breaking scale f,: we discussed how mass (2.37) and coupling constant
with photons (2.36) depend on it. We didn’t mention it but also interactions with
fermions arise in the DFSZ model, this will be usefull in discussing astrophysical
constraints.
In the axion coupling with two photons lagrangian is present Ky, that is a dimen-
sionless model-dependent parameter, we can write it in a more compact way by
defining a new coupling constant g, that has now dimensions GeV~! and is still
model-dependent:

~ Qem K
[fa’Y’Y = Zga’Y’YaFMVF”V ; Gayy = ;_m % (238)
a
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note that as the mass, also g,,~ is inversely proportional with respect to f,; in this
sense axions are "invisible", their couplings with SM particles are extreamly weak.
It’s very usefull to write the electromagnetic interaction in terms of the electric
and magnetic fields, this is explicitly derived in appendix A of Ref. [10]:

Loy = igaWaFWFW = —gayyall - B (2.39)
This expression will be exploited in dealing with haloscope detectors, this will help us
in identifying the right mode inside a microwave cavity dealing with axion conversion
into photons.
It’s also worth noticing that Eq. (2.39) has exactly the same form as the Primakoff
process [8] that originally was introduced to explain 7 production through a
two-photon interaction, the decay of 7° into two photons is on the contrary called
inverse Primakoff process. This two processes can happen through a triangle diagram
with a virtual fermion in the loop and the axion therefore goes through the same
as it has the same interaction lagrangian, because it inherits the electromagnetic
interactions from mixing with the pion and n meson. The diagram representing
the inverse Primakoff process of the axion is shown in Fig. 2.1 (a), together with the
axion production via Primakoff effect diagram Fig. 2.1 (b).

Figure 2.1. [11] (a) Axion decay into two photons via inverse Primakoff effect. (b) Axion
production via Primakoff effect in vacuum.

This two diagrams provide both a detection technique and a production

mechanism: Primakoff effect could be responsible for an axion flux from stars while
inverse Primakoff is the paradigm of axion detection.
In practice, axion detection, can be exploited substituting a real outgoing photon
with an external static magnetic field, that provides virtual photons but is
treated as a classical electromagnetic field. In this sense, in Haloscopes, a microwave
resonant cavity is immersed within external magnetic field lines: this conversion is
schematized in Fig. 2.2. In this case too, if one exchange axion and photon lines,
this could account for a production mechanism in some regions of the universe where
high magnetic fields are achieved.

Figure 2.2. [10] Axion conversion into a photon stimulated by an external static magnetic
field.
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This digression aside, we noticed before that both coupling constant and mass
are inversely proportional to f,: this obviously imply that g,,, o< m,. In this sense,
the parameter space for the electromagnetic interaction is the g4, vs. mq plane,
this is shown in Fig. 2.3.

Figure 2.3. [28] Axion parameter space in terms of mass m, and coupling to photons gg-.
The figure can be reproduced by using the Python notebook available in the Ref, where
it can be found also all the references to the data. In yellow the model band is shown,
with KSVZ and DFSZ models marked. Red regions mark exclusions by direct detection
experiments (helioscopes, haloscopes, LSW). Green regions represent exclusions from
astrophysical searches in which is not considered the fraction of DM that axions make
up. Blue regions represent exclusions from astrophysical searches which rely on DM
axions.

This is an exclusion plot in the sense that the coloured regions, except yellow
one, represent the limits put on axion parameters by various experiments. Light
shining through walls, helioscopes and haloscopes will be described in Section 2.3
while bounds from astrophysical observations like sun or Supernovae in Section 2.2.3.
The yellow band instead is called model band and it accounts for QCD axion
models, such as KSVZ and DFSZ models. But why it is a band? Let’s consider
z = my/my as the light quark mass ratio, based on this the mass can be written as:

:mwfw \/E .
¢ fao 142

(2.40)

taken from Eq. (2.35) with = 1. From values of masses in [29], z can vary in the
interval 0.4 < z < 0.55, that results in a range for possible axion masses.

Moreover gq~, depends on this ratio too, but it also depends on the possible values
that Ky, can take. We expressed this latter quantity in the PQWW model but
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more generally for invisible axion models it can be written in the form [30]:

1/E 24+=z2
_t _z 2.41
Kary 2<N 31+z> (2.41)

where E and N are the electromagnetic and color anomalies of the axial current
associated with the axion. For a fixed value of z, there will be different straight lines
in the plot, corresponding to different models that have distinct values of the ratio
E/N. Usually are reported two lines: the one for DFSZ with E/N = 8/3 and the one
for KSVZ with E/N = 0, if in this case the electric charge of the new heavy quark is
taken to vanish. However the ratio E/N is not exactly known, and this allows to
define a band of values for the coupling as funcion of the mass, the yellow region in
the plot.

This is the ultimate task of axion searching experiments, to reach the model bands
to cover all the expected possible values of coupling and mass. In this sense there
must be seen the red vertical lines, they are all haloscope experiments, among which
also figures QUAX, covering a different possible value of the mass. However, this
band still does not exhaust all the possibilities. In fact, there exist classes of QCD
axion models whose photon couplings populate the entire still-allowed region outside
the yellow band, we will not deal with this models in this work tho.

2.2.3 Astrophysical and Cosmological constraints

The green regions in Fig. 2.3 accounts for Astrophysical bounds on mass and

coupling. In fact, if axion exists, it can affect various astrophysical objects evolution.
As said abundantly, axions are produced mainly by Primakoff effect. Considering a
star for example, axions can be generated in their core if a photon interacts with the
Coulomb field of the plasma. Then since axions are thought to interact very weakly
with SM particles, they can escape the core providing a non-standard energy loss
mechanism for stars. A stringent bound on the axion coupling can be extracted if
one compare data from measurements on stellar evolution with the predicted rate of
standard energy loss.
For completeness let’s talk for a moment about axion interaction with fermions:
we have already said that this type of interactions arise only in the DFSZ model.
The interaction term in the lagrangian can be written as an effective, CP-conserving,
Lagrangian term defining a dimensionless coupling constant gq¢s [31]:

Laps = —i9asra(Viys¥s) ; gwf==af?mf (2.42)

a
where Uy is a fermion Dirac field, C,f; a model-dependent dimensionless coupling
constant and my the mass of the fermion entering the interaction. So beside axion
processes concerning photons, also other processes like nucleon bremsstrahlung
and electron bremsstrahlung are possible: the former is a typical axion like

particle production process in neutron stars and Supernovae.
Returning to parameter space bounds, the most immediate astrophysical object
from which we can take data is the Sun. Axions can be produced in the core
and emitted as a flux, whose luminosity L, is proportional to ggw and the Sun
luminosity Lg [29]. The solar photon luminosity is fixed, so energy losses due to the
Primakoff process require enhanced nuclear energy production and thus enhanced
neutrino fluxes. The all-flavor measurements by the Sudbury Neutrino Observatory,
together with a standard solar model, imply L, < 0.1Lg, giving the constraint of
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|gary| < 4.1-1071% Gev™!. This is labelled in Fig. 2.3 as "solar v".

A more restrictive limit derives from globular cluster (GC) stars that allow for
detailed tests of stellar evolution theory. The stars on the horizontal branch (HB)
in the color-magnitude diagram have reached helium burning phase; if axions
undergo Primakoff effect, they take away energy and as a result the duration of the
HB phase is shortened. Comparing the number count of HB stars with the number
count of Red Giant Branch (RGB) stars, yields the upper bound |ggy| < 6.6 - 10711
Gev~!. This is very important because represents the strongest limit on Jar~ for
a wide mass range, see Fig. 2.3. The constrain on gq,, may be translated to
fa > 3.4-107 Gev, corresponding to mg < 0.5 €V, for the DFSZ axion model, with
E/N = 8/3.

Another important constraint comes from the observation of the SN1987A Su-
pernova: the duration of the neutrino burst measured on Earth would have been
much shorter if axions interacted quite efficiently with nucleons through nucleon
bremsstrahlung. But SN1987A allows to bound the axion photon coupling too if
the mass is very small: in fact axions could be produced in the core via Primakoff
effect, and then could reconvert into photons in the intergalactic magnetic field. The
lack of a v ray peak in correspondence with the neutrino pulse permits to constrain
|Gary| < 5.3-10712 GeV~! for m, < 4.4-10719 eV.

As in this case, in the same way, large scale B fields exist in astrophysics that can
induce axion photon oscillation. B is much smaller than in the laboratory, whereas
the conversion region L is much larger. Therefore, while the product BL can be
large, realistic sensitivities are usually restricted to very low-mass particles. In this
sense, all those green areas on the left in Fig. 2.3 are present: they are upper bounds
resulting from various observation of astrophysical objects [29].

Concerning all the blue regions, instead, they are placed in relatively large mass area.
The two-photon decay infact, is extremely slow for axions with masses in the CDM
regime, but could be detectable for eV masses. But the main difference between
blue and green regions is that green ones represent exclusions from astrophysical
searches for axions which are independent of the fraction of DM that axions make
up, while blue represent exclusions from astrophysical searches which rely on DM
axions. I will not discuss further this upper bounds, more details can be found in
[29] while the complete bibliografy for the parameter space in [28]. Although it is
instructive to talk about one cosmological constraint, in relation to the hypothesis
of axions constituting CDM, concerning CMB data. Photons of the CMB could
produce axions if they interact with intergalactic magnetic fields, this would lead
to distortions in the CMB spectrum. Therefore in the hypothesis of axion CDM
that will be explored soon, one of the requests that they must satisfy is to be stable
particles. They should have a decay time greater that the age of the universe and so
it can be shown that axions become stable in the universe time-scale if (in the
KSVZ model) the mass is m, < 20 eV.

As well as for the various blue regions that indicate direct experimental observation
in the hypotesis of axions constituting cold Dark Matter, in these circumstances
we have also possible indirect hints and bounds for axion parameter space. For
very weak coupling the ultra-light axions are produced non-thermally in the early
universe: at these early times, at temperatures well above the QCD phase transition,
the axion is effectively massless and the corresponding field can take any value,
parameterized by the “misalignment angle” 6; [32]. Later, as the temperature of
the primordial plasma falls below the hadronic scale, the axion develops its mass my
and when it becomes of order the Hubble expansion rate, the axion field will start
to oscillate around its mean value (a) = 0. These coherent and spatially uniform
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oscillations correspond to a coherent state of nonrelativistic axion particles, whose
contribution to today’s energy density, in terms of the critical energy density, can
be estimated as [29]:

f 1.165 6,LL€V 1.165
Qatho.u(gml‘;GeV) f@?zmz( -~ ) Fb? (2.43)

where Hj is expressed in terms of h = 100 km s~' Mpc~!. F is instead a factor
accounting for anharmonicities in the axion potential. As it can be seen in this
equation, ), increases as m, decreases, thus the axions cannot be too light because
the axion energy density must satisfy the observational constraint that the Dark
Matter density is Qpyrh? ~ 0.12 [33]. Assuming F6? ~ O(1), the condition
Q,h? < 0.12 can be turned into a lower bound to the mass and to fq:

me >107%eV;  f, <102 GeV. (2.44)

With lower mass values, axions would alone exceed the observed DM density, leading
to an "overclosure" of the universe.

In conclusion, what is important from astrophysical and cosmological constraints, is
that it can be identified a preferred region for the mass. We can therefore take
the axion mass to lie approximately in the range:

1070 eV <m, <1073 eV (2.45)

and as can be seen in Fig. 2.3, this is the region with the majority experimental
effort. Infact, in this region lies all the upper bounds from Haloscope experiments
that reached in some cases the model band. Among these figures ADMX, the
paradigm for haloscope detection, but also QUAX: the INFN experiment for axion
search.

All methods of detection will be covered in the next section; in the mean time it is
worth noticing that lower mass values are still viable if one drops the assumption
that 92-2 ~ O(1), considering small 6; values. This hypotesis leads to a possible
finetuning problem but also to anthropic selection [1, 34]

2.3 Detection techniques

In the previous two sections we discussed about how the axion model comes

out from theory and about its potential in solving two of the greatest problems in
particle physics. We described also which is the paradigm of Axion detection and
production, with the purpose of set stringent limits on its parameter space. After
talking about some constraints coming from indirect astrophysical and cosmological
experiments, it’s now time to approach at the various direct experimental techniques,
such as Light Shining through Walls, Helioscopes and Haloscopes: all the
red regions in Fig. 2.3.
A common point to the three detection techniques is that they make use of the axion
to photons interaction: such a coupling modifies the Maxwell’s equations and the
propagation of a free axion. If we take the lagrangian that considers only axion and
photon we have:

1 1 1
L= 5(8u0L)2 — fm2a2 ~1

1 .
5 F, F* 4+ EgawaFm,F”’” (2.46)
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so that if we apply the Euler Lagrange equations for photon vector field and for
axion field, one obtains the equations of motion in the absence of electromagnetic
charges [10]:

V-E =gqyB-Va
V-B=0

24
VAE+OB=0 (247)
VAB —0E = goyy(E AN Va — Bosa),
(O+m2)a=—gonE - B. (2.48)

In Eq. (2.47) the axion field is regarded as a source of electromagnetic fields while
in Eq. (2.48) the solution gives the axion field in terms of an electric and a magnetic
field. This ambivalence will be exploited in the detection techniques.

2.3.1 LSW and Helioscopes

Let’s start with the most tricky of the three: Light Shining through Walls
experiments are conceptually very simple to understand but in practice they rely on
two consequent and dependent interactions. A typical experimental setup it’s shown
in Fig. 2.3: the sense of the experiment is to use Primakoff process to produce an
axion like particle and then inverse Primakoff process to reconvert them in a photon.

Figure 2.4. [35] Sketch of an LSW experiment.

A photon beam is injected in an optical cavity, in presence of a static magnetic
field that provides a virtual photon: If an ALP is successfully produced, it can pass
the opaque wall without interacting with it and reach the second cavity. At this point
the same procedure is carried out, but in this case the focus is on the ALP-photon
conversion. The probability that, starting with a photon ALP conversion, you get
another photon is [32]:

4 Iym? lom?

Py —=a—n)= 16W$in2 (M)sinz (Z4wa) (2.49)
where w is the laser frequency, 6 the angle between the laser polarization and the
static magnetic field B and [, o the lengths of the two production regions. By
tuning opportunely the ratio /;/w, this type of experiments are sensitive to different
mass values.

The first such Light Shining through Walls experiment was performed by the
BFRT (Brookhaven-Fermilab-RochesterTrieste) collaboration, it reached a sensitiv-
ity |gayy| < 6.7-1077 GeV~! for m, < 1 meV. The current best limit, |gqy,| < 3.5:1078
GeV~! for m, < 0.3 meV, has been achieved by the OSQAR. (Optical Search for
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QED Vacuum Birefringence, Axions, and Photon Regeneration) experiment; the
ALPS I (Any Light Particle Search I) experiment achieved a similar sensitivity too
[29].

The probability can be enhanced if optical resonant cavities (Fabry-Perot) are em-
ployed in the production and regeneration regions: the experiment ALPS II (Any
Light Particle Search II) is based on this concept and aims at an improvement of the
current laboratory bound on gqy, by a factor ~ 103. Resonantly enhanced photon
regeneration has already been exploited in experiments searching for “radiowaves
shining through a shielding”. For m, < 107> eV, the upper bound on Javy~ €stab-
lished by the CROWS (CERN Resonant Weakly Interacting sub-eV Particle Search)
experiment is slightly less stringent than the one set by OSQAR. All this discussed
upper bounds are shown in red in Fig. 2.3.

Helioscopes instead exploit essentially the same mechanism as LSW experiments,
even if they bypass the first conversion. They exploit a possible well known source
of axion: our Sun. As said in section Section 2.2.2, the production mechanism is
the Primakoff effect but in this case the role of an external field is played by the
Coulomb field of the plasma. An experimental scheme is shown in Fig. 2.5, the
photon regeneration takes place in a lab: intense static magnetic fields are applied
for the conversion within a movable structure similar to telescopes, pointed towards
the Sun. We anticipated that an interaction axion photon has the form like in Eq.

Figure 2.5. [1] Sketch of an Helioscope pointing to the sun with an intense magnetic field
and optical readout.

(2.39), this allows us to choose the right direction for the external magnetic field. As
Sikivie pointed out [7,36], the magnetic field has to be applied in an orthogonal
direction with respect to the axion flux so that the direction of the generated photon
polarization vector is parallel to B.

From the solar flux, axions with energies in the keV range are produced because
the temperature of the core is in this range of energies. Therefore we expect axion
convertion into x-ray photons in the lab: modern helioscopes are then equipped with
x ray focusing optics and x ray detectors.

The differential flux of ALPs at Earth in the 1-11 keV range, due only to the
Primakoff process, is [1]:

2
a0 _ 602. 1010(9"7”) E248Le 7305 ! (2.50)

dE 10-10 GeV -1 cm? s keV

where E is the ALP energy in keV and the peak is at about 3 keV.
We expect a large ALP’s flux since there is a large number of photons inside the
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sun, nevertheless we are searching for "invisible' model with a very small coupling
so that the flux is not that high or otherwise the Sun would loose energy too fast
with significant impact on its evolution.

The most recent helioscope CAST (CERN Axion Solar Telescope) uses a decom-
missioned LHC dipole magnet on a tracking mount. As it can be seen in Fig. 2.3,
CAST has established the limit [gqyy| < 6.6 - 10~ Gev—! for m, < 0.02- eV. To
cover larger masses, the magnet bores are filled with a gas at varying pressure: limits
up to 1.17 eV then allowed CAST to “cross the axion line” for the KSVZ model.
Sensitivity to significantly smaller values of g,,, can be achieved with a next-
generation axion helioscope with a much larger magnetic-field cross section: such a
prospect should be satisfied by the “International Axion Observatory” (IAXO) [29].

2.3.2 (Galactic Axion halo

In order to talk about haloscopes we must first justify the meaning of their
introduction as a detection technique, we need to talk about all the properties of
galactic DM axions: "halo" infact stands for the galactic CDM halo that is thought
to surround our galaxy.

The two key parameters that we need to describe the DM halo in our galaxy are the
density distribution p(r) and the energy, or velocity, distribution. Our problem
is luckily simplified becouse in order to talk about a detector localized at earth is
sufficient to know only the value of the local DM density and the mean velocity with
its dispersion. The local DM density ppys is estimated to lie in the range (0.2, 0.56)
GeV cm™? from several experiments [37] but researches focused on axion detection
usually refer to a value of 0.45 GeV cm™3 [38]. Another assumption that is usually
done is that the axion density equals the DM local density, so p, = ppas is employed
in all the equations below.

A series of assumptions are made about the velocity distribution too: it is assumed
that the galactic halo has virialized, so that it reached an equilibrium condition in
which the kinetic and potential energies are related by the virial theorem. Following
this, the velocity distribution is approximately Maxwellian and can be written as
[39]:

3
2 —mav2
f(v)d3v = n, <T:a> e 2 dv (2.51)

with T as the "halo temperature' and where n,, the axion number density, is

given by:
1074 eV
ne =% ~45. 1012(06) em ™3, (2.52)
Ma Ma

Knowing the velocity distribution it can be calculated the rms velocity of the halo,

often called dispersion, that is defined as v = <v2>% where (v?) = [v?f(v)d®v. From
Refs. [39] it is estimated to be T = 270 km/s that in natural units can be took to
be T ~ 1073. All this quantities are calculated with respect to the center of our
galaxy, but as we know the Earth moves with respect to it with velocity labelled
as vg. As a conseguence the Earth moves inside the CDM halo and an hypotetical
haloscope on its surface should experiment an effective axion "wind" with a velocity
v, = v — vg. There are three components that characterize the Earth’s velocity
vg: the orbital velocity around the Sun, its rotational velocity and the velocity of
the Solar System in the galaxy that has a dominant contribution with respect to the
other two. The axion wind velocity therefore still follows a Maxwellian distribution,
but with a value 7, ~ 305 km/s that is still of order ~ 1073.
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All this discussion is useful because we can continue with our assumption of non
relativistic DM particles constituting the halo: in this sense we can identify the
energy of an axion with its mass energy, E, = m,. All this because the halo energy
dispersion about the central line is given by:

1
E,=mg + §ma@3 ~ mg[l + O(1079)] (2.53)

and provided this, the axion linewidth is very narrow, its definition is:

dE, mgv;/2 7
= ~5.2-107". 2.54
E, -~ (2.54)

What is important respect all this properties it’s the following quantity: the inverse
of the linewidth, that is the ratio of the energy to the energy spread, is called figure
of merit or quality factor of the galactic axion halo and is defined as:

Mg

Qo = ~1.9-10° (2.55)

me04 /2

This quantity characterize the kinetic properties of a generic CDM galactic halo,
independently of the axion mass and it will be very important when we will discuss
about the power emitted by an axion signal in a microwave cavity in Chapter 3.
Let’s introduce here another two quantities that are useful in haloscopes design:
axion’s coherence length and coherence time. In order to talk about the former
let’s consider the De Broglie wavelength of an axion:

2 200 peV
Ao = 1 :6.9<'ue>m (2.56)

MaUq Mg

that is of order of some meters. It’s really important because we will have microwave
cavities with diameters of order some cm so it allows us to treat the axion field
uniform in the region of space where our experiment is located. The coherence length
is related to A, through O(1) factors so in our case of small cavities the hypothesis
of De Broglie wavelenght identified with it holds.

We can think of the coherence length as the region of space in which the axion
field can be considered spatially constant, due to the broad oscillations two points
in this volume always have approximately the same phase, and it is connected to
the coherence time that is the time after which two points within the coherence
length will dephase, this because the axion field is not perfectly monochromatic.
This quantity is defined as:

2
Ta ™ Q. (2.57)
Mg

and is very important for haloscopes design because we can think of the interaction
between the axion field and a resonant cavity as a pair of coupled oscillators: the
coupling will hold only for a time ~ 7.

2.3.3 Haloscopes

We have finally arrived to the last kind of experiment, the one this thesis is about.
As the other two techniques, haloscopes relie on the inverse Primakoff process where
now the virtual photon is provided by a static magnetic field.
We will discuss extensively about all haloscopes details, such as microwave cavity
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Figure 2.6. [1] Microwave cavity with an applied external magnetic field that provides an
axion photon conversion.

and readout electronics, in Chapter 3 but it is important to mention here the main
characteristics. A very introductory sketch is reported in Fig. 2.6.

An haloscope is based on the equality that holds between the photon frequency
and the axion mass V,.s ~ mg, this derives from the fact that the axion is non-
relativistic (E, ~ m,) and that after an interaction the photon energy is equal to
the axion energy (v..s = E,) because when a magnetic field is static, it is considered
as constituted by many virtual photons, so when a single photon interacts the energy
transfer is negligible. Moreover the photon energy and the resonant frequency of the
cavity have to be matched, in this sense a cavity mode can be excited.

Not all the cavity modes are usefull in our experiment, concerning our case of axion
photon interaction we have seen that the lagrangian is of the type of Eq. (2.39).
Therefore if Z is the axis direction of the cavity and the external magnetic field
is applied along Z, the only cavity modes that can be excited by an axion are the
transverse magnetic modes for which the electric field has component along the 2
axis.

Another very important requirement of an haloscope is that the microwave cavity
must have the possibility to vary somehow its resonant frequency to scan over a
range of axion masses. The most intuitive way is to vary the geometric parameters
of the cavity, in this sense we will see in further discussions that one possible way
is to insert a rod inside the empty volume to modify the resonant frequency of the
mode with its movement.

The feasibility of this technique was established in early experiments, like RBF
(Rochester-Brookhaven-Florida) and UF (University of Florida), of relatively small
sensitive volume, setting limits in the range 4.5 < ma < 16.3 peV but lacking the
sensitivity required to reach the model band [29]. Later, the first generation of
ADMX achieved sensitivity to KSVZ axions over the mass range 1.9 — 3.3 ueV.
This experiment mploys a NbTi superconducting magnet up to 8 T with a copper
microwave cavity with a volume of about 200 L. Inside the cavity there are two
movable rods that allow to tune the resonant frequency approximately in the
range (0.46 - 2) GHz, that corresponds to the mass range (1.9 - 8.26) ueV [40].
Somewhat later, the ADMX experiment commissioned an upgrade that replaced the
microwave HFET amplifiers by nearquantum limited low noise dc SQUID microwave
amplifiers and, more recently, with Josephson parametric amplifiers, with noise near
quantumlimited too. ADMX has so achieved an unprecedented axion DM sensitivity
in the mass range between 2.7 and 4.2 peV , down to the DFSZ benchmark axion
photon coupling over much of the range.

The HAYSTAC experiment reported results from a microwave cavity search for
DM axions with masses above 20 peV while ORGAN experiment aims to probe
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axions over the relatively high-mass range 60 peV < m, < 210 peV exploiting long
thin cavities. Then there is CAPP that has recently reported results approaching
KSVZ sensitivity in the mass range 6.62 — 8.82 ueV and last but not least the
QUAX experiment, all this limits can be seen in Fig. 2.3.

The first experimental results done with the new haloscope of the QUAX experiment
located at Laboratori Nazionali di Frascati of INFN (LNF) have been obtained
between november and december 2023. The cavity frequency was varied in a 6 MHz
range that corresponds to a previously unprobed mass range between 36.52413 and
36.5511 peV. No excess was observed in the power spectrum so it was set a limit
corresponding to |gay| < 0.861 - 10713 GeV~1 [9].

To finish this introductory part it is very pedagogical to show all the experimental
projection on the axion parameter space: they are all reported in Fig. 2.7. Among
these there are the proposed MADMAX experiment that will place a stack of
dielectric layers in a magnetic field in order to resonantly enhance the photon signal,
aiming a sensitivity to probe the mass range 40 peV < m, < 200 peV and the
proposed FLASH (Finuda magnet for Light Axion SearcH) experiment. This
project plans to employ the Finuda magnet of 1.1 T for a copper cavity of about 4
m3 in order to search galactic axions in the mass range 0.5 - 1.5 pueV [41,42].
What is important from this projections tho, is the fact that in the next 10 years
more or less all the model band will be covered. This can lead to two scenarios:
QCD axion model ruled out by experiment or its discovery resulting in a revolution
in particle physics that will shift all the experimental effort to this field.

Figure 2.7. [28] Axion parameter space with all the experimental bounds from Fig. 2.3.
Semi transparent regions correspond to future experiments. The figure can be reproduced
by using the Python notebook available in the Ref, where it can be found also all the
references to the data of all the future experiments displayed.
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Chapter 3

QUAX experiment

3.1 Radiofrequency

In the previous chapter we overviewed the axion landscape of particle physics,

passing through all the theoretical motivations and the experimental effort to discover
this new type of physics. Now it’s time to go into more details about haloscopes: we
need to talk about microwave cavities, magnets, cryogenic systems etc.
For this reason this chapter starts with a detailed description of a resonant cavity,
the characterizing part of an haloscope. Moreover, the working frequencies of QUAX
are in the microwave range (order 10 GHz) so some radio frequency concepts are
introduced. The main goal is to establish a model to describe a resonant cavity
from a circuit point of view, for this reason the scattering matrix is introduced.
This description leads us to the functions employed for calibrating the experiment.
The content of this section is adapted from the textbook of Refs. [43], a standard
reference in the field of radio frequency.

3.1.1 Resonant cavities

Resonant cavities are, in their simpliest description, volumes enclosed by con-
ducting surfaces. In this sense, we will firstly find general solutions to Maxwell’s
equations for the specific cases of TE (transverse electric) and TM (transverse
magnetic) wave propagation in cylindrical waveguides. Later on, we will apply a
further boundary condition that takes into account the fact that the conducting
plates of a cavity are short circuited at both ends. In Fig. 3.1 the geometry of an
arbitrary waveguide is shown, it is characterized by conductor boundaries that are
parallel to the z axis and is assumed to be infinitely long.

=
ST

Figure 3.1. [43] On the left a general two conductor transmission line and on right a closed
waveguide.
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A waveguide is a conducting structure made of one ore more conductors. We
treat resonant cavities then only TE and TM modes can propagate since only one
conductor is present.

Assuming perfect conduction, time harmonic fields with an e/“! dependence and
wave propagation along the z axis; the electric and magnetic fields can be written as:

E(z,y, 2) = [e(z,y) + 2e.(z, y)]e 77

j 3.1
H(z,y,2) = [h(z,y) + éhz(xjy)]e—aﬁz (3.1)

where the wave is propagating in the positive z direction, propagation in the negative
z can be obtained simply by replacing the propagation constant 5 with —f.
Moreover, assuming that the waveguide region is source free, we can write Maxwell’s
equations as:

VX E=—jwuH,

V x H = jweE (3:2)

and these six equations can be solved for the four transverse field components in
terms of E, and H, as follows:

_J 8EZ_ 8HZ>
He kg( eﬁy 561: ’
—Jj OF, 8HZ>
" k‘%(eax +68y | (3.3)
Ex_—g(ﬁaEerw 8HZ>’
c T

_J(_ H,
Ey_kg( 58y wp 8:6)’

where k2 = k? — 32 is defined as the cutoff wave number: its name will be clear later.
k is instead the wave number of the medium filling the guide: k = w,/pe.

Now the solutions to the transverse fields are obtained imposing the field configura-
tions of the various modes and the boundary conditions. We will focus, as said, to
the Circular waveguide: Fig. 3.2 shows the geometry of such a guide with inner
radius a.

Figure 3.2. [43] Geometry of a circular waveguide.
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Because cylindrical geometry is involved, it is appropriate to employ cylindrical
coordinates, in the same way as before we can derive the cylindrical components of
the transverse fields from the longitudinal components:

_i/ OFE. OH.
E, J(ﬁ Milhada )

AN L
_ —j(BOE.  om.
¢‘k%(pew _”“ap)’ 5.4
_J (wedE, OH, ’
=59 %)
—j( OB.  BOH.
f%:%(eap+pa¢)

Transverse electric modes (TE) are defined as E, = 0 and so we need to find
only Hyz, the latter is a solution to the wave equation:

V2 H, + k*H, = 0. (3.5)
If, H.(p, ¢,2) = h.(p, ¢)e %%, we can express the equation in cylindrical coordinates:

9% 10 1 02
o 10 10 k?)h $) = 0. 3.6
(552 330+ 52502 + 12 ) 0r) (36)
Using the method of separation of variables, factorizing h.(p, ¢) = R(p)P(¢) and
substituting it in the differential equation, the general solution is found:

P(¢) = Asin(n¢) + Bcos(ng) (3.7)

where n is an integer number because the solution to h, must be periodic in ¢ due
to the cilindrical simmetry of the system.

Conversely, the differential equation for R(p) is recognized as Bessel’s differential
equation; the solution to it is then:

R(p) = CJn(kcp) + DYn(kcp) (38)

where J,(z) and Y, (z) are respectively the Bessel functions of first and second
kinds. Thanks to the simmetry of the system, the solution with Y,,(x) is physically
unacceptable because becomes infinite for p = 0. The solution for h, can then be
simplified:

ha(p, 6) = [Asin(ng) + Beos(nd)]Ju(kep) (3.9)

where the C constant has been absorbed into the A and B constants. We must
still determine the cutoff wave number k.. This can be achieved by enforcing the
boundary condition that the two tangential components of the field must vanish on
the waveguide wall. By our initial assuption we know that E, = 0 so this lead us to
the another condition Ey(p = a,¢) = 0. To satisfy this last one condition we must
have: )

J,(kca) =0 (3.10)
where J, is the first derivative of J,,. If the roots of .J,(z) are defined as p,,,., so
that J,,(p,,,) = 0, where p,,,. is the mth root of .J,,, then k. must have the value:

ke, = Pnm (3.11)

Cnm
a
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where values of p,,, are given in mathematical tables shown in Refs. [43]. What
is important in all this discussion is that all the TE,,,,, modes are labelled by this
two subscripts, they are defined by the cutoff wave number where n refers to the
number of circumferential (¢) variations and m refers to the number of radial (p)
variations. The propagation constant is instead:

’ 2
N BN GO (3.12)
a

and now is clear why the name cutoft was used: [, is real when k > k., so the
waves can propagate. On the contrary, in the other case, the corresponding mode
becomes evanescent since 3, becomes pure imaginary and the propagation factor
e~78% takes the form of a decaying exponential. Moreover a cutoff frequency can be
defined:

!

k P
TE c nm

= == . .1
Jeum 2 /e 2mwan/pe (3.13)

The first TE mode to propagate is the mode with the smallest p;lm, from tables
[43] is seen to be the TE;; mode. This mode is therefore the dominant circular
waveguide mode and the one most frequently used. Because m > 1, there is no TEqg
mode, but there is a TEy; mode.

Finally, having found the solution for h.(p, ¢) we can write all the transverse field
components for the TE,,, modes; I will not write explicitly the solutions, they can
be found in Refs. [43].

The difference with transverse magnetic modes (TM) is that this ones are defined
for H, = 0 so in this case we need to find E,. The procedure is the same as before
and lead us to this soluzion for e,(p, ¢):

e.(p, ¢) = [Asin(ng) + Beos(ng)|Jn (kep). (3.14)

This is still the point to apply the boundary conditions, now E,(p = a,$) = 0 can
be directly applied to e,, giving us the condition:

ke, = Lo (3.15)

Cnm
a

where p,,, are the mth roots of the nth bessel function of the first kind J,, and
not of his derivative like before. In this case too it can be defined the propagation
constant and the cutoff frequency that are determined in terms of k

2
TM p
nm — k2 - ( nm) )

a

Cnm*

(3.16)
fTM Pnm

enm = 9rq, e

All the discussion about the available modes inside the cavity is the same as in
the TE case. Also in ths instance I will not report the explicit solution of all the
transverse modes: it is only necessary to insert the solution for e,(p, ¢) inside Eq.
(3.4), it is done in Ref. [43].

In order to describe resonant cavities the last step is missing: it is sufficient to
impose one additional boundary condition to the system. A cylindrical cavity
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Figure 3.3. [43] Geometry of a cylindrical resonant cavity.

resonator can infact be constructed from a section of circular waveguide shorted at
both ends. In Fig. 3.3 is shown the geometry of the system.

Our discussion is simplified by the fact that we can now start from the solutions we
found for the circular waveguide modes, they already satisfy the necessary boundary
conditions on the wall of the circular waveguide. Let’s write the solutions for the
transverse electric fields E, and Ey4 of the TE,,, and TM,,, circular waveguide
mode, that can be written as:

Ei(p, ¢, 2) = e(p, )(Ate 7Pm* 4 A=), (3.17)

Here e(p, ¢) represents the transverse variation of the mode while A™ and A~ the
arbitrary amplitudes of the forward and backward traveling waves.

Recalling that the propagation constants are the ones from Eq. (3.12) and Eq. (3.16)
respectively for TE,,,, and TM,,,,, modes, in order to have E; =0at z=0and z =d
we need to choose AT = A~ and AT sinB,,d = 0. This means in other words that:

Bpmd = tr,  £=0,1,2,3... (3.18)

and this implies that the waveguide must be an integer number of half guide
wavelengths long. Therefore the consequence is that now we have an additional
subscript for the modes which represents the variations along z from 0 to d. It is
now time to define the most important quantity that we will need, the resonant
frequency of the modes. For TE,,,, is:

’ 2 2
TE c Prm %
= — 3.19
nmt 2m MTET\J < a ) * ( d ) ' ( )

while for TM,,,,¢ is:

2 2
T c DPrm 120
M _ 4+ [ = 2
nmt 27T,//,LTET\J ( a ) ( d ) (3.20)

and this two equations tell us what are the dominant modes for a resonant cavity.
The dominant TE mode is the TE;1; while for TM mode is the TMg1g one. This two
equations are obviously useful for the design of circular cavity resonators: they show
us what modes can be excited at a given frequency for a given cavity size. Although
we need to remember the cutoff frequencies: only the modes with f > f. =~ can
be excited inside a cavity, below this value the propagation constant becomes pure
imaginary and the waveguide modes are evanescent, the electromagnetic field decays
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exponentially with the distance.

One last important thing which can be noticed from the resonant frequency expres-
sions is that they vary with the inverse of the geometric dimensions: this explains
the fact that smaller cavity volumes are needed to probe higher axion masses, that
correspond to higher frequencies.

In conclusion of the subsection it is useful to give a visual demonstration of one
electromagnetic mode inside a cylindrical cavity, in particular the one that is used
in the QUAX experiment. In Fig. 3.4 is shown a simulation for the TMg;9 mode, at
left is depicted the electric field while at right the magnetic one.

Figure 3.4. A simulation of the fields of T'My;o mode. Field lines of electric (left) and
magnetic (right) fields are drawn. The pictures are provided by Ing. Simone Tocci and
obtained with the ANSYS-HFSS software[56] .

Red arrows correspond to regions where the field is more intense and only half of

the cavity is shown. This picture is useful because we can have a concrete example
of the role of the three subscripts we discussed about. This mode has ¢ = 0 so as
can be seen the electric field has no variation along the z direction. Moreover, it has
n =0 and m = 1 so there is no variation in the ¢ coordinate: the field is maximum
at p = 0 and falls off until it reaches a null value at p = a. One important thing
that will be useful later is that all the modes with £ = 0 don’t depend on the length
d of the cavity and so scale only with the radius with a dependence a~!, as can be
seen in Eq. (3.19) and Eq. (3.20). This will be crucial when discussing about the
way to change the resonant frequency of the cavity.
But why is it the favourite mode utilized in the QUAX experiment and in all
the conventional haloscopes? Conventional haloscopes exploit the axion photon
interaction and in the previous chapter we saw in Eq. (2.39) that the interaction
lagrangian is proportional to E-B, where E is the electric field of the excited resonant
mode and B is the external static magnetic field. The external B field it is indeed
oriented along the axis of the cylindrical cavity: in this sense the interaction can
be maximized by the field lines of the TMy1¢9 where E is parallel to the z axis and
maximum at p = 0.

3.1.2 Parametrization of a resonant cavity

After describing a resonant cavity from an electromagnetic point of view, it is
now time to characterize it from the circuital one to underline its main properties
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and quantities.

Therefore the cavity will be parametrized as a parallel RLC circuit, that behaves
as a resonator. Lumped-element circuit theory is assumed, and the calculations are
made in phasor notation.

I
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Figure 3.5. [43] A parallel RLC circuit.

The parallel RLC resonant circuit, shown in Fig. 3.5, has an imput impendance
that is:

11 !
Zin = | =+ — 4+ jwC 3.21
in (R + ij + Jw ) ( )
and the complex power delivered to the resonator is:
1 1 11, VP
Pin= ~Zin|ll|> = 2|V o = ~ Zin—. 3.22
in = 3 Zlll = 5IVI 7 = 52 (3.22)

Recalling that the real power dissipated in the circuit and the electric and magnetic
energies stored in the resonator are:

LV
po.=-1t
loss 2 R
1
w.=tvpe (3.23)
1.9 1
Win Z‘V‘ w2l
our expression for the complex power becomes:
Pin = Ploss + 2jw(Wm - We): (3‘24)

while the impendance:

_ 2Pz _ Ploss + 2]w(Wm - We)
72 e

Zi (3.25)
Resonance occurs when W, = W,,, and correspondigly the input impedance at
resonance is Z;, = R which is purely real. This condition implies also that the
resonant frequency, wg, can be defined as:

Wy = (3.26)

1
VLC
Another very important quantity is the quality factor that is defined as the ratio
of the energy stored in the cavity and the power dissipated by it:

Wi, + We
en./sec

Q=w (3.27)



3.1 Radiofrequency 31

and for the parallel resonant circuit, evaluated at its resonance, can be expressed as:

2Wm
W ke = (3.28)

Q -0 -Ploss O.)()L .

This quantity is important because it quantifies the losses of the system, that can
be conductor, dielectric or radiation losses (all due to R). It is very useful because it
also quantifies the width of the resonance curve of a resonator in its power spectrum.
Until now we treated only the isolated resonator, so the quality factor that we wrote
is defined as the unloaded quality factor Qg and corresponds to the intrinsic Q
factor of the system.

Nevertheless, in an experiment, our system needs to the coupled to other circuit
elements in order to be fed and measured. This configuration has the result of
lowering the quality factor because external elements introduce additional losses.
Therefore the whole system has now an external quality factor too, Qe.t, and the
combination of the two is the loaded quality factor, Qp:

11
QL QO Qewt '

Now with this two definitions of the resonant frequency and quality factor we can
modify the expression of the input impendance of Eq. (3.21):

(3.29)

jwRL R
Zip, = - = - 3.30
R —W?RLC + jwL 1+ jQod (3.30)
where now ¢ is:
§=2 20 (3.31)
wo w

As said, our system needs to be coupled to an external line in order to be fed and in
order to have an output signal. In our whole scheme, the cavity will be parametrized
as a parallel RLC circuit because the walls are short-circuited for construction while
two antennas will be coupled with it. The coupling of the antennas can be
schematized as two ideal transformers, in the following i will not make an exhaustive
discussion about it but i will underline the most important properties of this couplings
because we will need them in the making of the experiment. A detailed treatment
can be found in Ref. [11]

Figure 3.6. [11] Equivalent circuit of the cavity, assumed as a parallel RLC, and the
exitation of the antennas, schematized as transformers.

In Fig. 3.6 is schematized the parametrized circuit: this is the particular case in
which the device is excited from port 1, where an ideal generator has been placed.
The ciruit can be further simplified and this is done from the generator point of view.
In our specific case the ratio of the windings between the cavity and the second
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antenna is set to ng : 1, this lead us to consider the second port as an impedance
in parallel to the cavity. Using the relations between voltages and currents of an
ideal trasformator, we can calculate Vg, the voltage of the parallel RLC, using the
voltage and the current of port 2:

n2

VCav = HQZOICaUT = ZQICav (332)

where Zy = n3Z; is the impendance seen by the cavity looking towards port 2.

Iterating this procedure, the impedance seen by the generator looking towards port

1 is the parallel between Zg,, and Z5 times # and the resulting equivalent circuit
1

is shown in Fig. 3.7.

Figure 3.7. [11] Final equivalent circuits of the system formed by resonant cavity and
antennas.

Before evaluating the impedance Z; it is very useful and instructive to map the
arbitrary constants n; and ny into two observable quantities. We will refer now
to the coupling coefficients k1 and ko that are defined as the ratio of the power
dissipated in the external circuitry and the power dissipated inside the cavity:

P Py
P Cav P Cav

k1 (3.33)

but in general if one defines an external quality factor with the power dissipated by
external circuit, Qe.t, the common definition for one coupling is:

_ Qo

k= 3.34

Qe:z}t ( )

where if we use the definition for the loaded quality factor as in Eq. (3.29) we get:
Qo

= ) 3.35

Qu=1% (3.35)

That will be very useful later in this work.

Figure 3.8. [11] Equivalent circuit as seen from the cavity, for the evaluation of k1 and ko.

If now we want to evaluate the two couplings of our system, the equivalent circuit
seen from the cavity of Fig. 3.8 helps us to evaluate them. In this case, Z] and Z}



3.1 Radiofrequency 33

are the impedances seen by the cavity that are:

Z, =n27Z,

3.36
Zh = n3 7. (3.36)
They are both in parallel with Zg,, so the voltage at their edges is the same and is
equal to Viogy. From circuit theories, time averaged powers can be calculated as in
Eq. (3.22), thus for our equivalent circuit they are:

1 |VC(w|2
P==
T2 2z,
1 |VCav|2
p -1 3.37
2 2 n%ZO ( )
_ 1|VCav|2
Cav 9 R

where the power dissipated by the cavity is real and only due to the resistance R.
Thanks to them, we can now calculate the coupling coefficients:

Py R Py R

. = 3.38
TL%ZO’ 2 ( )

k1 -
Poaw n%ZO

PCav

so that finally we can calculate the impedance Z; seen by the generator looking
towards port 1 that is the parallel between Zg,, and Zo times 1712’ all is represented
1

in the equivalent circuit of Fig. 3.7:

1 1
7, = Zcav/[n320 Zokl( %o 117000 ) B Zoky (3.39)
= 2 = T 1 = ~ .

n % T 175G 1+ k2 + jQod

3.1.3 Scattering matrix of a resonant cavity

In the previous subsection we schematized our whole system from a circuital
point of view, identifying its main charactristics and properties. Nonetheless one
problem still holds, networks in radio frequency regime cannot be treated with
lumped element circuit theory. The problem is that wavelengths of electromagnetic
signals are comparable with the size of the circuit elements. Complications come
because we don’t have unique voltage and current values at every point of a given
branch, so a distributed element theory has to be taken into account. In the following
therefore it will be used the formalism said of the scattering matrix.

As in the Ref. [43] equivalent voltages and currents can be defined for an arbitrary
lossless waveguide. In this description all the quantities are expressed in phasor form
and are complex quantities, while z is taken as the direction of propagation:

V(z) = Vofe /% 4+ vy el

A . 3.40
I(z) = Igre_]ﬁz — Io_ejﬁz ( )

where VOjE and ISE are the complex amplitudes of the incident and reflected waves

and thanks to them we can calculate also the impedance of the line, that is defined

as:

W Ve

Zy= -0 =20 (3.41)
I I
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Figure 3.9. [43] An arbitrary N port microwave network.

In Fig. 3.9 is shown a completely generic N port network, any kind of waveguide
or trasmission line can converge in a port. For every port we have an associated
phase reference plane t,,, this corresponds to the plane where the coordinate of the
direction of propagation of the nth line is zero: z, = 0. For every port we have
the voltage amplitude of the incident wave entering the port, V., and the reflected
amplitude V,;"; the same goes for the two currents I;X. So that we can calculate the
total current and voltage at one generic plane t,:

VilZy =0)=V,F + V.o

I(Z,=0)=1I7 -1, (3.42)
The principle around which an n port network works is that the voltage outgoing
from the nth port is due to a fraction of the incident wave into the same port
and a fraction of the incident waves entering the network from all the other ports.
Following this scheme, the scattering matrix relates all the reflected waves with the
incident ones in this simple way:

V=T =1sT v, (3.43)

where the single elements of the matrix are:

i 1"']7 ] B 511 S]'f - S] N 1T IlJr ]
| s v
s Vi Sy :
i i

Figure 3.10. [43] The scattering matrix [S] of the microwave network that relates reflected
and incident voltages.

A specific element of the scattering matrix can be determined as:

S, = Vi (3.44)
J V+
J 'Ve=0,k#j
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and can be experimentally obtained by driving a port j with a voltage VjJr while

the amplitude V™ is measured at port i; all this is implemented after matching all
the other k ports so that neither incoming V,:r or reflected V), are present in the
experimental scheme. This formalism is very useful because this setup will be used
later in the experiment. For example one can measure all the reflection coefficients
Sii by matching all the other ports except the i one; while in the same sense all the
transmission coefficients S;; can be calculated by injecting a wave from port j and
measuring the ouput from the port i, matching all the others. In this context, a
transmission line is said to be matched when ended with a load impedance equal to
its characteristic impedance, so that the reflection coefficient is zero.
It is now time to put aside the general case and to talk about our specific case.
In our experimental setup we have our resonant cavity that is coupled with the
outside through two antennas. Both the ports of the cavity are connected via
two transmission line to a vector network analyzer (VINA) that provides and
measures the power delivered to and from the cavity. The key role of the VNA will
be described when dealing about the experimental setup in Section 3.3, now the
important thing is that we restricted to a 2 port network that has this scattering
matrix: g g
11 912

wy_bm &J (3.45)
where in our specific case S12 = S91 because we have a reciprocal network, meaning
that we don’t have a preferred direction for the system inspection.
Remembering all the discussion done in the previous subsection, dealing with the
resonant cavity coupled with two antennas, we can now calculate the scattering
parameters of our system. From its definition, S7; is the reflection coefficient T"
at port 1, we refer to Fig. 3.7 for our calculations: Z; is considered a lossless
transmission line that is terminated on a load Z; that we calculated in Eq. (3.39).
Moreover, the voltage contribution to port 1 comes both from an incident and a
reflected wave V3 = V| + V", with all this ingredients we can now calculate our
reflection coefficient at port 1:

g _Z1—Zy k1 — (14 k2 + jQod)
11 — ¢

= = . 3.46
V1+ V; =0 Z+ Zy 14 k1 + ke + jQod ( )

Before evaluating the transmission coefficient it is immediate to calculate the other
reflection coefficient So2. Thanks to the symmetry of the configuration, this is easily
found by swapping the roles of k; and k3 in the expression of Sii:

g, k2= (L4 ki +jQod)
2T T ki + ks + Qoo

(3.47)

Last but not least is the Ss; coefficient, port 2 must be again matched to have V2+
so the only contribution comes from V,~ that is calculated using transformer laws
as we used in the model of Fig. 3.6, combining the voltages from the two different
transformers it is found:

_ Vew _my, (3.48)

n2 n2

Va

By definition of So; the system is injected from port 1 and in this case we have both
the contribution, V4 = V{" + V" = V{7 (1 +T'), where I = S1; = V;*/V;". Therefore
we can now use this value for V; in Eq. (3.48) and finally evaluate our transmission
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coefficient using its definition:

_ Y _m
=2 ==
Vilyfoo M2

(14 Sp) = 2vhky (3.49)

S = .
2 14+ k1 + ko + jQod

The discussion for the last parameter is not relevant, because as we stated before
our network is reciprocal so in our experimental scheme we have Sy = S1s.

A more detailed description of this model can be found in Ref. [11], I wasn’t
exhaustive but I underlined the most important elements because all this coefficients
will have a key role when dealing the calibrations of the QUAX experiment, and
therefore the majority of my experimental activity.

3.2 Haloscopes in practice

In the previous section we discussed about all the radiofrequecy concepts we
need, we ended up with the scattering parameters of a 2 port microwave cavity that
we will measure during the experiment in order to calibrate our whole system. This
section is, conversely, concentrated on how to detect an axion signal; therefore it
will exploit all the key properties of an haloscope.

An axion haloscope relies on the interaction of Eq. (2.39) to locally convert the axion
CDM energy density into an observable electromagnetic signal, which is enhanced
by the large local density, by the coherence of the axion field oscillations, and finally
by the application of a large external magnetic field.

Following the introduction of the working principle of an haloscope, the two best
figure of merit in axion detection will be presented, such as the power of the produced
photon and the scan rate. In the end it will be treated also the way to find a possible
axion signal and how to enhance it.

In this case too, my discussion will be only an overview about all the essential physics
we need. For a more comprehensive discussion please refer to Refs. [10,44].

3.2.1 QUAX collaboration

An axion haloscope is a cryogenic, tunable high-Q microwave cavity immersed in
a strong magnetic field and coupled to a low-noise receiver. The Quax collaboration
between LNF and LNL exploits two different ways to detect and axion from the
CDM halo, we will treat in detail the mode of operation of the QUAX experiment
in the Laboratori Nazionali di Frascati where it runs in the ADMX configuration,
i.e. with an empty cavity. Later on in the end of this subsection we will have a
brief digression about the other configuration, the one with a magnetic sample
inside the cavity as implemented in the Laboratori Nazionali di Legnaro.

In Fig. 3.11 are shown the basic elements of an haloscope, we will start by dealing
with the role of the magnetic field. We already stated that in an haloscope we
have the axion photon conversion schematized as in Fig. 2.2 where one external
photon line of the inverse primakoff process is substituted by an external static
magnetic field. A classical electromagnetic field corresponds to a large density of
virtual photons. Removing a single photon does not appreciably change the energy
of this field configuration. Thus in a Primakoff process the incoming axion scatters
elastically and emerges as a photon with the same total energy, and polarization
parallel to the applied magnetic field as Eq. (2.39) suggests.

We already saw in Eq. (2.47) that the axion field is regarded as a source of
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Figure 3.11. [44] Schematic of the microwave cavity search for DM axions. The axion
signal is designated by the narrow peak (red) within the bandpass of the cavity (pink).

electromagnetic fields: in our qualitative discussion it’s suffient to note that in the
presence of large static magnetic field By, a homogeneous oscillating axion field
induces an electric field oscillating at the same frequency v, with an amplitude:

E() ~ gawBoao. (350)

Unforuntately, this value of the electric field is still too small to be detectable in
a reasonable experiment because of the very weak coupling, although with the
enhancement of a strong magnetic field (By ~ 10T) and with an high density of
axions in the CDM halo. We have therefore to consider the effect of the enhancement
of the haloscope signal by the coherence of axion field oscillations.

In our experiment we have enclosed the high field region in a microwave cavity with
resonant frequency v,. As treated before, microwave resonators have many different
resonant modes but just for now let’s treat a simple model where the axion field
and cavity mode are a pair of coupled oscillators. By assumption the axion field
and cavity mode have the same frequency so the only other useful parameters are
the oscillator linewidths Ay, and Av, and their mutual coupling k.

We have two limits for this model: the strong coupling (k > Av,, Av.) where
we can neglect damping entirely so the equations of motion are easy to solve
and the oscillators exchange energy at the beat frequency k. However this is
not the limit in which the haloscope operates, let’s assume we have the nominal
parameters m, = 20pueV and By = 10 T; from Egs. (2.56) and (2.57) we have
Av, = 7,1 = 1/(200us) and as we will see we have Av, > Ay, (as illustrated in
Fig. 3.11). This means that the lifetime of an excitation in the cavity 7. ~ A;cl
will always be shorter than the coherence time of the axion. Using the nominal
parameters m, = 20pueV and By = 10 T in Eq.(3.50) and adopting natural units,
we obtain k = (gayyBo)/2m ~ 1/(3.5 days). The axion and cavity mode are then
exceptionally weakly coupled. What happens is that the amplitude of the cavity field
oscillations will grow coherently until time ¢ = 7. after which the power dissipated
in the cavity will balance the incoming axion conversion power. Therefore we can
approximate the behavior in this regime by just cutting off the slow dynamics of
the strongly coupled solution at t = 7; this lead us to an amplitude for the induced
electric field like:

Eqy ~ ga’y’“/BOGJOQL; (3'51)

that is just Eq.(3.50) but enhanced by the cavity quality factor Q.
This is the first time that we encounter a key feature of all the haloscopes, the
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optimal value for Qr, is infact @), so this is an experimental limit. It is then not
useful to increase indefinitely the cavity quality factor further beyond this point
because the haloscope would be limited by the finite coherence time of the axion
field itself.

It should however be noted that in classical physics the cavity does not amplify the
axion photon interaction, it is only the volume where the interaction takes place.
Large @Q, just allows the coherent oscillations to grow for longer, and the larger
the amplitude of the cavity field oscillations, the easier it becomes for the axion to
“push” the cavity mode.

As anticipated before, QUAX can operate also in a different configuration that is
implemented in the LNL laboratories. This consists in the employment of magnetized
media to exploit the coupling of the axion to the electron spin, as first proposed
in Ref. [45]. They stressed that aligned electron spins stimulate the axion photon
conversion because having a spin density of n, ~ 10?3 cm ™ would be equivalent
to applying a 270 T magnetic field in a conventional haloscope. This idea was the
backbone of the QUAX proposal [46] that is therefore a type of experiment sensitive
to the coupling with electrons gge. as we defined in Eq. (2.42).

This research activity is then divided between LNF with a conventional haloscope and
LNL where magnetized media and a conventional haloscope are already employed. I
will not discuss further about the experimental activity at LNL but it’s worth our time
to underline the results obtained in the last years. In particular it was carried out an
upper limit on the coupling of DFSZ axions to electrons of geee < 4.9 - 10710 GeV~!
for a mass m, = 58ueV [47] and more recently an upper limit of g, < 0.766- 10713
GeV~! for a mass m, = 43ueV reaching in this case the sensitivity necessary for the
detection of galactic QCD axion [48]

3.2.2 Power emitted and Scan rate

We briefly discussed about the coupled oscillator model that gives us an idea
of the role of the resonant cavity in the axion detection. This model however does
not capture the effects of spatial coherence that will emerge now naturally from the
treatment of the haloscope signal power. The equations of axion electrodynamics
are derived from the Lagrangian in appendix A of Ref. [10] and in the same Ref. are
also solved with boundary conditions appropriate to a haloscope detector. In this
thesis I will only underline the key passages, the first of which is the inhomogeneous
wave equation for the electric field in the presence of an axion source:

V?E — O}E = —g4,,Bo0?az (3.52)

where the cavity walls define the boundary conditions. We already exploited in
Section 3.1.1 that we have a complete set of orthogonal modes e,, for the electric
and h,, for the magnetic field inside the cavity. If we use the orthogonality condition
for the modes and integrate over the cavity volume our wave equation becomes:

i
(wn + 07)En(t) = Gay Boy=fal?) (3.53)

where ), is the arbitrary normalization for each mode, the subscript n comes from
the orthogonality condition (E can be written in terms of the orthogonal basis) and
k,, includes within itself the integration, it is defined as:

kp = /d?’xz -e. (3.54)
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Eq.(3.53) is the equation of motion for a driven, undamped harmonic oscillator. The
damping coeflicient for a mode with resonant frequency w,, and quality factor @,
is its linewidth w,, /@, so a term of the form (w,/Q,)0;F that takes into account
losses of the system can be added to our equation. Togheter with this new piece,
Eq.(3.53) is carried to the Fourier domain and this lead us to the amplitude of the
Fourier component at w that is just:

kn w?a(w)

FE = B
n(w) = Gy OAn w2 — w? — iwwy/Qn

(3.55)

which can be compared to Eq.(3.51) to note that we found again the scaling with
Jay~, Bo and a.

To simplify the dependence on parameters of the cavity mode, it is easiest to proceed
directly to evaluating the total steady-state electromagnetic energy stored in
the cavity mode:

“+o00 2 —+o0 4 2
Un — )\n/ (21—:|E(w)|2 :g2 B2 kn dw w ‘a(w)|

On el . 3.56
ayy—0 A oo 27 (w2 _ w%)2 + w2w%/Q% ( )

Now it is time to do some approximation, |a(w)|? is sharply peaked near the cavity
resonance: in particular we have that wme: ~ My = w, — dw, where the detuning
Swq is ~ O(wn/Qn) and Q, > @, > 1. All this means that the coefficient of |a(w)|?
is approximately constant over the range of frequencies that contributes appreciably
to the integral. Moreover with a high Q cavity, we can expand to lowest nonvanishing
order in the small quantity dw,/w, and we can also write the ramaining term of
la(w)|? inside the integral in terms of m, and p,. What we get the for the energy

stored is: ) )
Qki'n Qn &
ON, 1+ (2Qn0wq /wn )% m2”

It is now time to define another very important quantity, remembering all our
discussion in Section 3.1.1 for a cylindrical cavity we have the three indices n,m, ¢,
so let’s introduce the form factor:

kgmﬁ (f d*x2 - e;ksz(x))2

¢ V)\an V f d3X6($)|ean(X)|2

Un = 9o\ B (3.57)

(3.58)

where V is the cavity volume and €(z) is the permettivity. It is easy to see that
Cnme < 1 and physically this quantity parameterizes the overlap between the cavity
mode and the external magnetic field, that is a dependence that comes directly from
the interacting lagrangian of Eq. (2.39).

Following our discussion of Section 3.1.1, an empty cylindrical cavity generally has
both TE and TM modes and clearly, by definition, C,,,¢ will vanish identically for
any TE mode so we can restrict our attention only to the TM ones. Moreover,
thanks to our homogeneous external field Byz, spatial oscillations in the electric field
profile lead to other cancellations in Cp,,¢. For an empty cylindrical cavity infact,
Crme 7 0 only for TMy,,o modes, furthermore it falls also rapidly with increasing
mode index m. It is for all this reasons that our attention is restricted now only to
the TMp19 mode that is the one used in practice by most haloscope detectors.
Thanks to this discussion we can now concentrate only to one mode and drop the
mode subscript on U, w, and @,. Our final result for the steady-state energy
transferred to the cavity mode by axion field oscillations is then:

1
(2Q 10w /we)?

P
U = Gary s BoV Crme QL (3.59)
a
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where is important to note the Q% dependence that we would have obtained from
Eq.(3.51).

It all adds up with our qualitative discussion of the previous subsection but what
we care really about is not the energy deposited in the mode, but how much power
we are able to couple into our receiver chain. The total power dissipated in any
electromagnetic resonator is given by:

U
Ptot = wC@ (360)

while the signal power coupled to the receiver is:

1
14+ (2Q 10wy /we)?

where we used the relationships between Qr, Qo and Qey: of Egs. (3.29), (3.34) and
(3.35). The last needed step is to put aside all the natural units because we need to
make contact with the experiment, inserting the appropriate constants inside our
last equation we get:

9ayy? 13 3 k I o >( 1 )
Py, = | =R o || ——w.—DB . . .62
7 ( mg P )(1 kg 0V CrmeQr 1+ (2QL0wa /we)? (3.62)

From this equation we can also appreciate the experimental role of the coupling
parameter k. Our last expression is written in terms of ()7, that is more related to
measured quantity than )y that is fully determined by the geometry and material
composition of the cavity so it remains fixed. ()1 and k are adjustable so it gives
us the opportunity to find the optimal value, if we infact insert Eq. (3.35) in our
expression for the signal power we can note that Py has a k/(1 + k)? dependence.
Then our signal is maximized for k& = 1 that is a very specific configuration, in
this case the cavity is said to be critically coupled to the receiver chain. In this
peculiar case, half the signal power is dissipated by the resistance of the cavity walls
and the other half is coupled into the receiver.

We have also an undercoupled (k < 1) case where @, and Py;, increase but most of
the power is absorbed internally and an overcoupled (k > 1) case where most of the
conversion power is measurable but (07 decreases.

It all appears very straightforward but the critical coupled case is not the optimal
haloscope operating point. This new experiment point of view comes along with one
important request: m, is unknown so the cavity resonance v, must be tunable.

In all haloscope experiments, the standard procedure is to sit at one frequency
Ve, measure the cavity noise for whatever integration time is required to attain
the desired sensitivity, increment v, by dr. and repeat this process many times.
The axion sensitive resonant mode of any microwave cavity can be tuned by using
an automated mechanical system to adjust the position of internal conductors or
dielectrics, this will be discussed in detail in section Section 3.3.1. In practice all the
cavity parameters such as Qr, k and Cpne will vary throughout the tuning range but
for the derivation of the scan rate it’s assumed that only v, vary during the tuning
process. Morevore it is also assumed that the tuning step size is some constant
faction 1/F of the cavity linewidth (dv. = Av,./F'). All this discussion will enable us
to determine an appropriate value for §v. and derive a useful approximate expression
relating the haloscope scan rate dv/dt to the coupling sensitivity gay--

In this case I will not treat the discussion at all, presenting directly the expression
of the scan rate used in the article of the first run of the QUAX experiment [9]. A
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very exhaustive discussion of the scan rate derivation is given in Ref. [10] but a
more general one is given in Ref. [49] where different cases are taken into account.
Therefore the following expression can describe two different cases, the one with
QL < @, and the one with Qr > Q:

d 2 1 /B2VOyo\> k2 ,
I/_ 4 pa ( 0 010) ( QQamZn(QL7Qa)7 (363)

dt ~ Y2 SNRZ\ kpTays ) (1+K)

where the signal to noise ratio, SNR, , is defined as the ratio between the signal
power and the uncertainty of the noise power SNR= Pj;y/ Pyoise, while Ty is the
system noise temperature, whose reduction is of fundamental importance in speeding
up the scan rate of the experiment. We will return and discuss more in detail about
this two parameters in the next subsection. As it can be immediately seen, this
expression allows us to reconnect to the discussion we did about the enhancement of
@1, in the previous subsection: we can increase (J;, as we want but we will always
have the experimental limit of @, that is of order 10°. It doesn’t make sense at all
to use a resonant cavity with a quality factor greater than Q.

Eq. (3.63) is then the most useful figure of merit for the design of a haloscope
detector. The most important thing here is that the scaling with @7, (so with Qo) is
weaker that the one of Eq. (3.62): this suggests us to design a cavity to maximize
C?Zmer rather than Cr%sz(QJ- This makes sense because when we increase QQ; we
enhance the signal power but also reduce the cavity linewidth, slowing the scan rate.
The expression for the scan rate gives us also the optimal experimental configuration
that has to be used in an haloscope detection. Once the cavity design is fixed, so
Qo, we can then determine the optimal value for k. From Eq. (3.62) it can be seen
that we have a scaling of k2/(1 + k)3 which is maximazed when k = 2. This will be
the aim for our experimental setup, we will return to it later when dealing with the
experiment details.

The scan rate gives us also another importan experimental hint, it furnish the
required measurement time 7 in order to reach the desired sensitivity |ga~| at each
step. In practice then, assuming some nominal values for the detector parameters,
the target sensitivity is reached after a time of integration of about:

dv\

therefore it is very important to chose the right tuning step, thanks to it we don’t have
to stick in one experimental point for an impractical experimental time. Nevertheless
we have to remember that the tuning step depends from the bandwidth of the
resonant mode of the cavity that in turn depends from @;. We will return to this
later in this thesis work.

3.2.3 Coherent detection

We have introduced and discussed the two figures of merit in the axion search,
they will play the fundamental role on the data analysis in order to put upper limits
on the axion parameter space in the working range of the QUAX experiment.
Before starting to describe the details of the experiment it is needed to handle some
numbers and to talk about the experimental challenges of this line of research. Let’s
start again from the power emitted of one possible axion event: using Eq. (3.62),
plugging in some benchmark parameter values for a detector and considering a
coupling |gqy| arising from the model band, it can be obtained a power that is of
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order Py;y ~ 10724 W. A value given at random is meaningless if it is not compared
to a real experimental case. We will get a better sense of just how small Py;, is when
we compare it to the noise power in any real haloscope.

To understand the noise limiting the sensitivity of a haloscope search, it is important
to appreciate that the haloscope signal is itself a noise signal in any measurement of
duration 7 > 7,. The conversion power will be distributed over a finite bandwidth
and then if we happen to be looking around the right frequency, the presence of
axions will manifest in incoherent fluctuations of the cavity’s electric field which are
in principle indistinguishable from other contributions to the total noise in the same
bandwidth.

The main contribution to the total noise that we must take into account is the
Johnson (thermal) noise [50] associated with the resistance of the cavity walls.
In Ref. [51] is showed that the voltage noise on an antenna receiving blackbody
radiation is completely equivalent to the Johnson noise of a matched load at the
same temperature. Therefore we can think of Johnson noise as arising from a
blackbody photon gas inside the cavity, in thermal equilibrium with the walls. For
our description we will write then the total noise power in any bandwidth A, in the
form:

PN = kBTSySAV (365)

where the system noise temperature Tjys is not necessarily equal to the physical
temperature T of the haloscope. Now we can put some numbers in, let’s consider
a room temperature system (Tsys ~ 300 K) and a bandwidth equal to Ay, = 7,71
this provides us a noise power Py ~ 10717 W that is larger than the Py;4 of before
by a huge factor of 105. This is a lot but luckily cryogenic temperatures come to
help: a dilution refrigerator can be used to reach a physical temperature of T' ~ 30
mK but also in this case we will have a ratio of about Py;y/Pn ~ 1073. This is less
than before but not yet the arrival point; in any case we have demonstrated one of
the key motivation to bring the whole system to cryogenic temperatures.
Becoming aware of the main source of noise of the system, the real figure of merit of
an haloscope shouldn’t be the signal power alone but instead:

Psig
0Py

R= (3.66)

where § Py is the uncertainty in our estimate of the total noise power and R is
the signal to noise ratio (SNR) that we anticipated in Eq. (3.63). To develop the
discussion further, we need a specific expression for d Py in an axion haloscope which
in turn depends on how we intend to couple our microwave cavity: to a coherent or
incoherent receiver.

The main distinction from the two approaches relies on whether the first element to
amplify the input signal and protect the SNR from further degradation is linear or
nonlinear, as can be observed by treating both regimes in a unified formalism [52].
The defining feature of a coherent or linear receiver infact, is that its output is a linear
function of the electric field at the receiver input. Thus a coherent receiver has
intrinsic spectral resolution: the Fourier component of the input signal at frequency
w will show up at the same frequency in the output signal. On the contrary, in an
incoherent or bolometric receiver, the output is proportional to the average
intensity and thus does not preserve the phase information in the input signal.
But what to keep in mind when chosing between the two principles? Our whole
discussion applies to detectors of electromagnetic radiation at any frequency, but in
the practical world technological limitations conspire to favor coherent detection at
low frequencies (v < 1 THz) and bolometric detection at high frequencies (v > 1
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THz). This because the electronic response of common materials is too slow to
implement a linear amplifier in the optical frequencies, while at microwave frequencies
the small energies of individual photons make bolometric detection, such as single
photon detection, demanding.

The working frequencies of the QUAX experiment are the microwave ones so we
restrict our attention to the coherent receiver case. What it’s done in practice is a
pairing of our microwave cavity to a coherent receiver by inserting a small antenna
through a port in one of the endcaps. What happens then is that the motion of
electrons in the antenna transduces the cavity’s fluctuating electric field F, into a
fluctuating voltage at the receiver input. At this point all the key passagges of an
haloscope search are done: the signal is amplified by the receiver chain, digitized at
room temperature, processed using a discrete Fourier transform and analyzed in the
frequency domain as a power spectrum.

To understand the sensitivity of the haloscope search, it is sufficient to consider the
statistics of the noise voltage at the receiver input, where we evaluated the signal
power in Eq. (3.62).

Let’s finally write the relation that describes the uncertainty in the (effective)
Johnson noise power in any bandwidth A, I report only the final expression but for
a detailed discussion refer to [10]:

kpTsysAv
NN

Thanks to this equation it’s immediate to see that the optimal bandwidth for a
haloscope search is Av, =~ Av,. Av. > Ay, will lead us to add more noise without
appreciably increasing the signal power while we can’t capture the whole signal if we
have Av, < Avy,. Thus using this optimal configuration and considering the signal
to noise ratio we obtain the Dicke radiometer equation:

Psz'g [ T
R —_— @ Aya- (3-68)

Assuming Ty, known, this equation gives us an estimate of the time 7 required to
detect or exclude axion conversion power Fg;y. As usual, the signal to noise ratio, is
the key fundamental quantity to estimate the sensitivity of a search with a given set
of experimental parameters: also in this case it is demanded a value of R = 5 for
both a discovery or an exclusion in the parameter space.

5Py = (3.67)

3.3 Experimental setup

This section is dedicated to the set up of all the instrumentation that served in
the first run of the QUAX experiment. First of all it’s advantageous to show a global
picture of the whole experimental structure as in Fig. 3.12 and its corresponding
graphic diagram that serves as schematic summary like in Fig. 3.13. After providing
a general overview of the setup, a more accurate description of all the constituent
parts will be presented. Thanks to this we will have all the tools to treat the whole
experimental run in the next chapter.

In Fig. 3.12, can be seen all the constituent parts of the experiment that will be
explored further in the next subsections. The main actor is the microwave resonant
cavity which is located under the cryostat. All the radiofrequency electronics starts
from this region and reaches up to the rack, which on the lower floor has the down
conversion part with low frequency electronics in order to acquire data with a low



3.3 Experimental setup 44

Figure 3.12. [53] A general view of all the experimental setup including the cryostat, the
radio frequency and low frequency electronics, the data acquisition part and the rack.

sampling rate ADC. Above this part, we have all the other instruments that provide
us radiofrequency signals such as an RF signal generator, or that allow us to measure
the scattering parameters of the cavity such as the vector network analyzer (VNA),
or simple DC signal generators. Before describing the details of all this specific
areas of the experiment, let’s talk about Fig. 3.13. This is a schematic of the
RF setup of the experiment. The isothermal lines corresponds to different plates
of the diluition refrigerator. We have three input lines available (L1, L2, L3) that
togheter with the output L5 line serve to calibrate the whole system, I will return
to this procedure in the next chapter when I will cover all the key passages of the
calibration procedure. We have 3 room temperature switches (RT1, RT2, RT3) and
one cryogenic, CR7, that serves us to send and receive the signal with the VNA each
time in different lines combinations. This is the key passage in order to achieve the
goal to measure all the scattering parameters of the cavity. The L5 line is designated
as the output line because it includes two amplifiers in it: the HEMT and FET
that are, respectively, the cryogenic and room-temperature amplifiers that begin
our amplification chain in order to measure the haloscope noise. Two circulators
(C1, C2) are also inserted in the RF lines, their role is to force a directionality of
the input signal and they act as isolators avoiding reflections. In the L5 line is also
indicated a superconductive RF cable in yellow which limits losses, and a power
splitter indicated with S1 that serves us to carry out both calibration procedures
and subsequent noise data acquisition. The three input lines have intrinsically 15
dB each of attenuation of the signal but L3 have two more attenuators of 20 dB
each. The end of L5, after the splitter, arrives to the down conversion part; here it
is not fully specified but is schematized as a whole area, I will return to it in the
next pages.

3.3.1 Cavity and mechanical rod

As previously emphasized, the microwave cavity represents the core component
of an haloscope. In this run of the QUAX experiment is used a cylindrical oxygen
free high thermal conductivity (OFHC) copper resonant cavity, with inner radius
r = 13.51 mm and height h = 246 mm, for a total volume V = 0.141 1 [9]. The
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Figure 3.13. [53] Experimental setup sketch with the temperature stages of the dilution
refrigerator and with the consituents of all the RF lines. L1 and L3 are input RF
lines, L5 is the output amplified line and L2 is an auxiliary line used for further checks.
Room temperature switches (RT1, RT2, RT3), cryogenic switch (CR7), attenuators
indicated with their attenuation values and the two circulators (C1, C2) are also shown.
A superconductive RF cable in L5 is indicated in yellow while the magnet, thermalized
in the 4 K vessel, is shown as two crossed squares. The HEMT and FET are the two
radio frequency amplifiers mounted on L5 that, through the power splitter indicated as
S1, bring the output signal to the down conversion part.

body is divided into two semicylinders, including the endcaps, sealed together with
screws. In Fig. 3.14 are visible the two sections of the cylindrical cavity, with the
mechanical rod that served to shift the resonant frequency of the modes. In
addition to the terminations for the rod, are present also the holes for the dipole
antennas: through them the cavity is coupled with two coaxial cables. One antenna
is fixed and weakly coupled, with coupling estimated from simulations 1.4 - 1073 and
verified to be less than 7- 1072 from calibration data (we will return to this point in
the next chapter), such that Eq. (3.62) and Eq. (3.63) are still valid. The other is
obtained by stripping the end of a coax cable, leaving only the central conductor
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for a 2 mm length as shown in the right image of Fig. 3.16. In the left image of
Fig. 3.16 the structure that serves to maintain the two stepper motor is shown. The
coax cable is connected to a linear motor, that is in grey in the background, whose
movement allows the tunability of the coupling. The linear motor is the attocube
ANPz111 [54], a nanopositioner for vertical motion, it works also at cryogenic
temperatures and as a piezoelectric motor allows us to insert the coaxial cable inside
the cavity by feeding it with voltages from specifications. Inside the structure for the
two motors there is a rotative stepper piezoelectric motor from Attocube Systems,
the model ANR240 [55]. As anticipated before, the frequency tuning is obtained
by moving a copper rod with radius 1.5 mm and length 244 mm inside the cavity
volume that is in turn reduced to an effective volume of V' = 0.139 1. The rod is
supported by PEEK nails, which are centered off-axis with respect to the rod, one of
this is clearly visible in the right image of Fig. 3.15 where a zoom of the cavity wall
is shown; here it can be seen the copper rod together with the PEEK and the hole to
insert the dipole antennas. At one end, the PEEK is grabbed by a copper mandrel,
which is rotated by the stepper motor, as in Fig. 3.16. Thanks to this movement,
the rod accomplishes an arc of circumference approaching the center of the cavity.
All the electromagnetic behavior of this system was simulated with the ANSYS
HF'SS suite [56] by Ing. Simone Tocci, this includes in order: the simulation of the
modes of the empty cavity, their modification with the copper rod inside and lastly
their shift due to its rotation. The resonant mode of interest, TMO010, has a starting
frequency of 8.817 GHz when the (ideal) rod is at rest in contact with the cavity
wall. Moving the rod towards the center, the mode is squeezed and simulations
indicate that the frequency is tuned up to 9.106 GHz with a rotation of 80 degrees,
while keeping the geometric factor Cpig close to its ideal value and with a reduction
of the quality factor of about 10%.

Although the intrinsic quality factor of the cavity without the tuner is measured
to be Qg ~ 10° at cryogenic temperatures, the PEEK supporting the rod and the
nonideality of the rod itself caused field losses, reducing the quality factor to about
50000. Also the coupling, that we wanted to be equal to k = 2 for the optimal value
of the scan rate, resulted to be k = 0.5 after a more accurate analysis of calibration
data. I will return to this point in the next chapter where I will analyze in detail all
the calibration procedure; it is still useful though to show at this point the effect of
the rotative motor to the whole system.

Figure 3.14. [53] The two sections of the cilindrical cavity, with the mechanical rod and
the holes for the dipole antennas. The mechanical rod is present in the cilindrical section
in the foreground, it can be noted because it is connected with the PEEK which comes
out of the base of the cylindrical cavity.
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In Fig. 3.17 the transmission coefficient of Eq. (3.49) relative to the TMp19 mode

is shown, this photo is taken from the VNA during a test of the cavity at room
temperature with the measuring apparatus as in Fig. 3.18. In the latter figure are
present the VNA, the whole cavity, one coaxial cable for the fixed antenna and a
movable antenna without the stepper motor, just to test in a simple way the resonant
mode of the cavity. Returning to the former figure, with a marker provided by the
VNA, the resonant frequency of the TMg1¢g mode is shown with its bandwidth and
the calculated load quality factor @J7,. The bandwidth is defined as the two points
around the peak where the power of the VNA is reduced of about 3 dB with respect
to the central frequency, from this quantity the VNA calculates immediately the
loaded quality factor; the intrinsic quality factor @)y is instead extracted from the fit
procedure illustrated in the next chapter.
In Fig. 3.19 a test regarding the effect of the movement of the rod in the cavity is
shown: four screenshot of all the first TM and TE modes of our cavity are illustrated.
Starting from the upper left, the mode of our interest, TMy1¢, is the very first mode
from the left side. The starting frequency on the screen is 8.7 GHz, the stopping is
9.5 GHz so the division is of 80 MHz each block. Moving the copper rod starting
from the wall of the cavity to its center, all the mods shift from a lower frequency to
a higher one; this can be seen in Fig. 3.19 starting from the upper left and going in
order to upper right, lower left and lower right.

Figure 3.15. [53] In the left image a general view of the cavity mounted in the cryostat
while on the right image a zoom on the cavity wall: in it, it can be seen more closely the
copper rod together with the PEEK and the hole to insert the dipole antennas.

In the first graph of Fig. 3.20 the frequency of the TMyig is plotted vs the
movement in degrees of the ANR240. All the points are the experimental frequencies
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in which all the first QUAX run took place. Because of the bandwidth of the
transmission mode we chose a step of 260 kHz for each point, this obviously depends
on the loaded quality factor that from measurements resulted to be of around 32000.
The starting frequency of the QUAX axion search is of 8.831516 GHz while the
stopping frequency is of 8.837765 GHz, corresponding respectively to an arc of
circumference of initial angle 2.95° and final angle of 13.17° for the tuning rod
starting from the cavity wall as a reference. We have 24 experimental points, each
of them spaced by a step of about 260 kHz, implying a 6.25 MHz span.

The second plot in Fig. 3.20 is about the sensitivity of the tuning procedure. The
data points are the same as in the previous plot; however, in this case, the y axis
shows the ratio between the frequency difference and the angle difference at each
step. The points follow a linear distribution, meaning that the sensitivity of the
tuning increases as the rod approaches the center of the cavity. As described before
the frequency step is always the same because is fixed by our choice so since the
sensitivity increases, it means that the step in degrees decreases. In fact, as the
circumferential angles increased, the necessary step of the motor was always shorter
to make every time the same step in frequency.

Figure 3.16. [53] In the left image the structure that maintains the two stepper motor
is shown. The linear motor is the one in grey in the background that is connected to
a coax cable, while the rotative one is connected to a copper mandrel that grabs the
PEEK of the copper rod. In the right image the coax cable that is used as the movable
antenna is instead shown.

3.3.2 RF electronics and cryostat

In this subsection we will deal the radiofrequency setup of the experiment
contained in the cryostat. There are two main reasons why we need to go to
cryogenic temperatures. The first relies on the two figure of merit of an haloscope,
Eq. (3.62) and Eq. (3.63), as we said the larger is @1, the better is the detection
capability of an haloscope. The intrinsic quality factor (g, although determined by
the cavity geometry, increases significantly at cryogenic temperatures, which is why
superconducting materials are used.
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Figure 3.17. [53] Close look to the transmission coeflicient of the TMp19 mode. The VNA,
through the 3 dB method, permits us to measure directly the loaded quality factor Qp,
too.

Figure 3.18. [53] Measurement apparatus that leads to the transmission coefficient shown
in Fig. 3.17, the VNA provides the RF input and it allows us to directly measure the
output signal coming from the resonant cavity.

The second reason is the fact that as we go down in temperature the noise is reduced,
as Eq. (3.65) tells us about. Due to this motivation most of the setup is hosted
in a Leiden Cryogenics CF-CS110-1000 dilution refrigerator equipped with two
Sumitomo pulse tubes with cooling power of 1.5 W at 4 K each, all the main parts
of the refrigerator as the mixing chamber (MC), the still and the heat exchangers
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Figure 3.19. [53] In this four figures are present the first TM and TE modes of the cavity.
Starting from the upper left and going to the lower right, it can be seen the effect of the
movement of the copper rod that shifts the frequencies of all the modes.

are indicated in detail in Fig. 3.21, including the thermalization plates with their
temperatures during regular operation.

The LNF haloscope employs a dry dilution refrigerator, whose operation relies on a
3He-*He mixture: the workflow starts from the MC that contains the pure *He phase
on top of the dilute phase of *He contaminated with 6.6% of 3He. The dilute phase
in the mixing chamber is connected with an upward pipe to the still that is partially
filled with liquid He and mainly vapor 3He, which is removed by vacuum pumps.
This causes a gradient in the *He concentration in the dilute phase of the MC so
to maintain an equilibrium, the pure >He in the mixing chamber crosses the phase
boundary in a diffusive motion downwards the dilute phase. The whole process is
endothermic, thus subtracting heat from the external environment, allowing to cool
the whole system [57].

In the practice, as a precooling operation we use liquid Nitrogen, that flows in
the LN pipes in thermal contact with each plate indicated in figure, to bring the
temperature from 300 K to 77 K. Then, a pulse tube, which operates compression
and decompression cycles to the *He gas, is switched on and brings the temperature
down to about 4 K. Finally, circulation of the *He-*He mixture is activated and
the system is cooled down to about 10 mK in the coldest plate where the mixing
chamber is thermally anchored. The MC is a stainless steel cylindrical container
closed with a copper cap on the bottom side, with a diameter of about 120 mm.
The still plate is usually at about 0.8 K, and this is an optimal temperature for the
operation of our refrigerator. In fact, due to the parasitic heat input on the 0.8 K
plate, the still does not need to be heated, although being provided with an internal
heater. The 4 K plate is instead stabilized at this temperature thanks to the contact
with the pulse tube.
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Figure 3.20. [53] In the upper figure the frequencies of the TMg;¢ mode of our interest are
plotted vs the movement in degree of the rotative stepper motor. In the lower figure the
sensitivity of the rotative motor is instead plotted. In this case it is in fact shown on the
y axis the ratio of the frequency and angle difference at each step.

The refrigerator is then segmented into different temperature stages constantly
monitored by a series of thermometers: a platinum resistive one in the 50 K plate
while on all the other plates ruthenium oxide (RuO2) thermometers are mounted.
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The magnet and the HEMT are thermalized at the 4 K stage, while the cavity is
connected to the last temperature stage which attained 20 mK at equilibrium. The
cavity temperature, monitored during the data taking, reached about 30 mK [9)].
A NbTi magnet was installed inside the cryostat [58], its dimensions are 486 mm
height and 100 mm of cold bore diameter. The maximum current in the coils is of
about 90 A, supplying energy for a 9 T magnetic field at the magnetic center. As
said the magnet is anchored to the 4 K radiation shield, thus thermalized at the
pulse tube temperature; his coils are made of NbTi, therefore being superconductive
at 4 K.

At the start of the run the magnet initially operated at the nominal field of 9 T, but
it was set to a lower safety value following a quench during a current ramp. The
experiment here described was then conducted at 8 T, with a field inside the cavity

volume of r.m.s /(B2) = 6.73 T.

Figure 3.21. [53] Detail of the Leiden Cryogenics CF-CS110-1000 dilution refrigerator,
showing the plate temperatures of all the thermalization stages. The main parts where
the dilution process happens are also indicated: the mixing chamber, the still and heat
exchanger.
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For testing samples with microwave radiation, the cryostat is provided with four
high-attenuating rf lines, from 300 K to the 10 mK stage, used as inputs, and one
low-attenuation rf line used as output. The rf wires are coaxial cables made of
BeCu-Ag-CulNi with SMA connectors endlines and are thermalized in each plate of
the fridge. In the rf lines used as inputs power attenuators are mounted along the
wires to reduce the amount of thermal power coming from the 300 K environment.
Concerning the one output line instead, it’s equipped with two linear amplifiers in
the radiofrequency regime. The two commercially available microwave amplifiers are
a cryogenic HEMT and a room-temperature FET, and are both field-effect
transistor amplifiers: they are shown in the Fig. 3.22 below.

Figure 3.22. [53] At left the cryogenic HEMT amplifier attached to the 4 K plate. At right
the Room temperature FET amplifier, mounted on a radiator.

The HEMT is a model LNF-LNC6_ 20C s/n 1403Z from Low Noise Factory and
is installed on the 4 K plate. Its main features are gain, compression point, and
noise temperature, which have been tested to verify the nominal values given in the
datasheet [59].

The HEMT gain results in 30 dB over a large bandwidth, between 4 and 12 GHz,
consistent with the nominal value. The 1 dB compression point defines the saturation
of the amplifier, and is defined as the input power value at which the gain is decreased
by 1 dB with respect to the linear regime, where the gain is constant: as a reference,
it is approximately -27.5 dBm at 10 GHz. The measured noise temperature instead
differs a bit from the nominal value of about 3 K added noise, given at 10 GHz when
the temperature is 4 K. An added noise temperature of about TH*MT ~ 4.7 K was
estimated.

The FET is a model LNA-30-08001200-09-10P from Narda-Miteq and is put at 300
K on the outside of the cryostat. The gain has been verified only between 8 and 12
GHz, resulting in 30 dB. The 1 dB compression point at 10 GHz has been found to
be about -16.5 dBm [60].

The tests are also repeated with the two amplifiers in series. The various contributions
to Tsys were introduced in Section 3.2.3. For any haloscope at physical temperature
T coupled to a coherent receiver, the most general expression for the system noise
temperature is:

1 1
k?BTSyS = hVNsys == hV(th/kBT—l + 5 + NA) (369)

The first additive term on the RHS represents the actual thermal noise, which we
see is proportional to the average number of blackbody photons inside the cavity
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at physical temperature T. The second term is quantum noise associated with the
zero-point fluctuations of the blackbody gas while the added noise V4 encompasses
the total input-referred noise originating in the receiver itself.

What does this last term consist of? We said that the crucial element which defines a
coherent receiver is a linear amplifier whose output is just the input signal multiplied
by some gain G > 1. The energy required to achieve this amplification has to come
from somewhere: Any device capable of amplifying a signal can also couple noise
into the output signal through whatever channel serves as the 'power line’ [10].

By definition, the added noise of any amplifier is not already physically present in
the input signal. Therefore, what is done in practice is to define the input-referred
added noise V4 as the physical added noise divided by the gain G. In this sense, the
input-referred added noise is just the additional noise that would have to be present
at the input of an ideal noiseless amplifier with gain G to reproduce the noise we
actually observe at the real amplifier’s output. This definition is convenient because
it allows us to define the input-referred added noise of the entire receiver chain in
an analogous way. It is easy to see that if the receiver chain includes several linear
amplifiers with gain G; and added noise IV4; in series, the net input-referred added
noise of the receiver chain will be:

1
—Nao +

1
Njp=N
A A1+G1 GGy

Nys + ... (3.70)

Therefore this is the key feature of an amplifier chain: the noise performance of the
first amplifier (or preamplifier) determines the added noise of the whole receiver
chain, provided it has sufficiently high gain G;.

In this sense our preamplifier is the HEMT that has an high gain and is thermalized
at 4 K. Plugging in numbers we see that in our configuration, the noise temperature
of the FET amplifier (with nominal value of about 66 K) does not contribute
significantly to the total noise temperature of the receiver chain. In fact, referring
it to the HEMT input, the contribution should be TF*T = 66 K/1000 = 66 mK,
where 1000 is the HEMT gain in linear units, thus being small compared to the
HEMT noise [58].

The HEMT and FET amplifiers are then put in series on an rf line used exclusively
as readout line; since the four original lines are very lossy, this is a fifth custom one.
To minimize loss contributions, the fifth rf line pieces between the 10 mK stage and
the still plate are constituted of NbTi-PTFE-NbTi coaxial cables, which remain
superconducting under about 10 K. After this special part, the line is formed, in
order, by a normal metal cable from the latter to the 4 K stage, the HEMT, a
normal metal cable for the remaining route from 4 K to 300 K, a commercial room-
temperature cable to the FET and lastly another commercial room-temperature
cable from the FET to the low frequency part we are going to deal in the next
section.

3.3.3 Low frequency setup and DAQ

This third section is dedicated to the final part of the experimental setup, namely
the elements situated outside the cryostat, following the FET stage.
We refer then to all the instrumentations that are placed at 300 K in Fig. 3.13. In
this figure are evident the VNA, the three room temperature switches, the splitter
S1 and the box that represents the down conversion part: in what follows we are
going to talk more explicitly about all of them.
In this sense, a specific zoom on the rack as Fig. 3.23 serves as a reference for what
we lack to describe. In it the various instruments that are useful for measuring or
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for allowing other instruments to work are shown, together with this latter ones.
As we previously anticipated, the VNA measures scattering parameters S;; of a
two-port network by reading the reflected or transmitted wave from the network
with respect to the incident wave. This is an Agilent E5071C from 300 kHz to 20
GHz and has two ports.

The signal generator is a Rohde&Schwarz SMA100B from 8 kHz to 20 GHz, with
one channel available. We use it as a source oscillator in continuous wave mode for
the Mixer that is the main actor of the down conversion part. The DC generators are
necessary to put in action the three room temperature switches and the cryogenic
switch that all together allow all the combinations required for measurements and
calibrations.

Figure 3.23. [53] A general view on the rack. In it the RF and the DC generators, the
VNA and the down conversion part that connects the output line of the cryostat with
the data acquisition board are all present.

As mentioned earlier, the mixer plays a central role in the down conversion
stage. But why we need this? The dominant motivation is that the available ADC
board in the laboratory can’t work in the RF regime so thanks to the mixer we
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can take the signal from L5 that comes out from the FET and bring it to ~ MHz
frequencies.

A mixer is a non linear component with two signals as input. The IQ outputs,
instead, correspond respectively to the real and imaginary part of a base-band
frequency signal. We can see it, together with all the other down conversion part, in
Fig. 3.24.

This part of the setup starts with the splitter S1 that collect the signal that comes
out from the FET. Just as the name implies, it splits the incoming signal in two to
redirect it to the down conversion (mixer) and acquisition electronics (VNA through
the switches). The splitter is then very useful, although it induces some losses of ~
3 dB to the whole line.

Figure 3.24. [53] A zoom on the down conversion part: the splitter S1 takes the output
coming from L5 and brings it to one IQ mixer. Here the signal is down converted and
then the I and Q outputs are first amplified by two low noise voltage amplifier and then
acquired by a 16 bit ADC board.

Here it follows the role of the I-Q mixer: its RF port is connected with the L5
that goes through the splitter while its LO port, that stands for local oscillator,
comes from the RF generator as we anticipated before. From the I-Q ports then
the two signals I and Q are generated, characterized by a frequency equal to the
difference between the two input ports.

In this sense the LO port has to be interpreted: it provides a reference rf signal from
which one can see the differences with the signal that comes from inside the resonant
cavity, which should include in it the expected axion signal. We will return to this
in the next chapter which concerns all the data analysis to detect an axion signal.

Therefore, as we said, the I-Q mixer converts the frequency to the baseband, and
the I and Q quadratures are amplified by low-noise voltage amplifiers ( x103 factor,
10 MHz bandwidth) before being digitized by a 16-bit ADC board, which has a 2
MHz bandwidth and sampling of 2 MS/s.
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Chapter 4

Axion search with QUAX @
LNF

4.1 Calibration procedures

In the last chapter we have discussed the principle of operation of a microwave
resonant cavity, together with all the surrounding experimental setup which consti-
tutes an Haloscope in its wholeness. We have specifically described the operating
principle of the QUAX experiment. We now have everything we need to go straight
into the data acquisition and analysis description.

This chapter provides a detailed description of the calibration procedure and the data
acquisition process at each experimental point, along with the final data analysis. At
the end of this work, then, we will be able to present the first experimental results
obtained with the new haloscope of the QUAX experiment at LNF.

In what follows I will cover the work done in [9], focusing more specifically on the
work that I have done in my own.

4.1.1 Scattering parameters acquisition

After the cool-down of the apparatus, the following procedure is used for cali-
brating and taking data at each frequency step, starting from the first measured
value of 8.8317690 GHz:

e The cavity frequency is set moving the ANR240 motor step by step while
monitoring the transmission scattering parameter from the VNA. Each time
the frequency is increased by one cavity bandwidth, about 260 kHz, with
respect to the previous data taking.

e The waveforms of the scattering parameters So1, S22 and Sio are collected
through the VNA thanks to all the possible configurations in which we can
put the system due to the role of the four switches (RT1, RT2, RT3, CR7)
and of the two circulators (C1, C2); along with the features of the VNA.
Referring to the line numbering in Fig. 3.13 we can see which lines are used
for each of the scattering parameters. So; is acquired measuring from L5 an
injected signal from L1, S99 measuring from L5 an injected signal from L3 and
S12 measuring from L1 an injected signal from L3.

e The raw data acquisition is started, lasting about 3600 s.
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The data acquisition for the subsequent analysis consists in recording the power
coming from the output line L5. But certaintly, to use this data, we need to calibrate
the output power and then to know the gain of the readout line.

The problem here resides in the fact that after the cool-down of the apparatus we
can’t measure any of the components inside the cryostat, unless via input signals we
can inject thanks to the VNA through the lines of the cryostat.

Therefore we follow the procedure developed in [61]; the first step is that the RF
diagram of Fig. 3.13 can be represented, in dB units, by the following system of
three coupled equations:

So1 = Gr1 + S5 (Ve, Qo, k) + Grs,
Soo = Gr3 + 955" (ve, Qo, k) + Grs, (4.1)
Si12 =Gr1+ 575" (ve, Qo, k) + Gpr3,

where with Sa; we refer to the measured scattering parameter while with S5{* we refer

to the intrinsic parameter which doesn’t include the various amplification /attenuation
of the lines. The function S5V depends on cavity parameters that will be estimated
through the fitting procedure, such as the resonant frequency, the intrinsic quality
factor, and the coupling coefficient ko. Since k; is fixed, determining ko also allows
us to obtain the total coupling k = k1 + ko.

We have now then a system of three equations in three indipendent variables: Gp1,
Gr3 and G5 that are the attenuations/gains of the respective input and output
lines and therefore what we are trying to estimate with the calibration procedure.

To describe what is done in practice, let’s examine a specific experimental point in
its entirety: we will now focus on the fifth Cavity resonance frequency taken that
corresponds to v, = 8.83282190 GHz.

As we anticipated before, the various configurations in which we can put all the four
switches allow us to measure all the scattering parameters of the resonant cavity. In
particular; to measure the transmission scattering parameter So; we have to send
an input signal from one channel of the VNA to one port of the cavity and collect
the electromagnetic signal through its second port that have to be connected with
the second channel of the VNA. As it can be seen in our specific configuration of
Fig. 3.13 then, in this case we use the line L1 to send the input from the VNA and
the line L5 that is designed as output and therefore has all the amplification chain
mounted in it.

The calibration procedure then continues with the use of the switches, whose role is
to allow the measurement of the remaining scattering parameters. By applying a
nominal DC signal, we can change their configuration as needed. Particular care
must be taken with the cryogenic switch CR7: since it is located inside the cryostat,
the applied DC signal causes heating of the system. After switching its configuration,
it is therefore necessary to wait a few minutes for the cavity to cool down before
proceeding.

Returning to the scattering parameters, let us now consider the measurement of the
reflection coefficient Soo. In this case, the input signal is sent into one port of the
cavity and the reflected signal is collected from the same port. According to our
convention, port 1 is connected to the cryogenic switch CR7, while port 2 is located
near the circulator C1. Therefore, to measure S92, we send the signal through line
L3 and detect the reflected signal via L5. The circulator C1 plays a key role here,
serving both to direct the RF signal in a specific direction and to isolate the cavity
from the HEMT amplifier. In the measured Sso coefficient, we observe the combined
effect of L5’s amplification chain and the -40 dB attenuation introduced by the
two attenuators on L3, as well as the intrinsic losses of both lines. This makes Sa9
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significantly different from So;, which is affected only by the amplification on L5
and is therefore more strongly amplified. It is also notably distinct from the last
scattering parameter we will discuss next.

The other transmission coefficient S2, theoretically the mirror of Ss1, is in practice
measured using as input the line L3 and as output the line L1. What is specific here
is that we can’t use the designed output line L5 and so we were forced to bypass the
amplification chain. This resulted in a weaker signal for this last parameter and a
noisier waveform.

In Fig. 4.1 are therefore plotted the module of the three coefficients: via the VNA
we take both the real and imaginary part of all of them but for the fits that we
are going to discuss we worked with modules because it was easier than working
with the phases of the functions. The three coefficients appear in descending order
of amplification, consistently with the configuration of the input/output lines of
the cryostat and the methods used to measure Ss1, S22 and Si2. Before providing
a detailed discussion of the plots, we first need to introduce the fitting functions
employed. For now, it is important to note that the plots are shown in linear units,
and unless otherwise specified, all subsequent analysis will be carried out in linear
scale rather than in decibels (dB).

Figure 4.1. Modules of the experimental data acquired from the VNA of the three
coefficients, in order: So1, Sos and Sis.

In Section 3.1.3 we derived an expression of the Lorentzian functions of the cavity
S§ that enters in Eqs. (4.1). For simplicity we rewrite them below, let’s recall
from Eq. (3.49) the expression for the two trasmission coefficients, from Eq. (3.47)
the reflective coefficient and take the modulus of all of them:

SC(I’U:SC(I’U: 2Vk1k2 . (4 2)
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where k; is the coupling to the fixed antenna, ko is the coupling to the mobile
antenna, )y the intrinsic quality factor and
w wo

_ Y 4.4
5w0 w’ (4.4)

with wg as resonant frequency.
Let us temporarily assume all the fit parameters as given. Fig. 4.2 shows the three
scattering coefficients used in the data analysis. It is worth noting that in the fits,
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the parameter ki is kept fixed at 1.4 x 1073, a value obtained from simulations. At
the end of this section, we will justify this assumption.

Figure 4.2. Plots of the theoretical functions of the three coefficients using the parameter
estimated from the subsequent fit.

S5¢Y and S{§Y share the same lorentzian function and are theoretically identical,

infact, Eq. (4.2) is symmetrical in the two couplings then in principle the two
transmission coefficients are the same. Let’s infact look at Fig. 4.2, the two functions
have the same trend and the same values. In particular, if we calculate the value at
the resonance, so by setting w = wp and then 6 = 0, we obtain S5{¥ = S{5” = 0.0353.
This two values that are ideally the same, in the practical world can be very different.
If we look in fact to Fig. 4.1, we note that the shape of the functions are still
lorentzians but the values are very different from each other due to the fact that
the way we measured the two transmission coeflicients is not the same. In our
experiment, we measured So; using lines L1 and L5, with L5 being the output line
connected to the amplification chain. In contrast, Si2 was measured using lines
L1 and L3, which do not include the output line. As previously mentioned, only
L5 contains amplifiers, while L3 not only lacks amplification but also includes two
additional 20 dB attenuators, along with its intrinsic attenuation. This difference
has a significant impact: at resonance, for example, the measured value of S is
about 10% times larger than that of Sy5. Furthermore, the absence of amplification
in the Sis path results in much noisier data, as visible in Fig. 4.1 and as we will
further discuss during the fitting procedure.
Before finally moving on to treat the fits, it’s important to discuss about S55” and
its behavior too. Unlike the other two lorentzians, this last one has a hole on the
resonance instead of a peak and, as we can see in Fig. 4.2 and in Eq. (4.3), for
frequencies relatively distant to wg the reflective coefficient tends to one. Also for
this function we can see the effect of the amplification chain, in the experiment we
measured S55" through the lines L3 and L5 so we had to use both the lines with
40 additional dB of attenuation and the line with all the amplifiers. In Fig. 4.1 it
can be seen that the two contributions more or less balance each other and in fact
Sy it is almost not amplified or attenuated at all with respect to S55” of Fig. 4.2.
This description was quite qualitative, let’s finally move on to the description of the
fitting procedure that will also allow us to treat all the previous discussion in a more
quantitative way.

4.1.2 Fit procedure

The calibration procedure is therefore done by a simultaneous fit of the Soi,
Soo and Sia spectra with their analytical expressions, allowing the extraction of
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the cavity parameters v., Qo, k12 and of the attenuation and gain of the input
and output lines. In particular, we are interested in the gain of line L5, which is
calculated solving the system of Eq. (4.1) from which we can calculate also the
value of L1 and L3. From the fit we can only extract the gain/attenuation of the
scattering parameters therefore of the combined effect of the two lines that constitute
a measured parameter, for example from the fit of S3; we can extract the combined
effect of L1 and L5.

For the experimental data of the scattering parameters we acquire from the VNA
both their real and imaginary part and then we calculate and plot their module. We
do the same thing for the fit too, in considering the analytical expressions of the
functions we start from the real and imaginary part separated. Let’s treat first So;
and Si2 that have the same analytical expression, we start from:

2V k1ko

SC(IU — cav — . , 4'5
21 12 1+ k1 + k2 + Q00 (4.5)
and identifying
2vk1k
— ﬂ, (4.6)
14+ k1 + ko
we separate the real and the imaginary part:
A . AQrd
SsPV = — 4.7
where now the loaded quality factor appears with its expression
Qo
= 4.8
L= T (48)

We now calculate the module of the function that is the analytical expression we
use to fit our experimental data:

2V k1ks
\/(1 + k1 + k2)2 + Q0252

’521‘ = Ab821 (4.9)

where Abss; is a parameter that we added a posteriori and identifies the contribution
of the lines, in this specific case L5 and L1, to which Ss; is subjected. More precisely
is the number we sought before when we had to understand how much are amplified
So1 data of Fig. 4.1 with respect to the analytical function SS§¥ of Fig. 4.2.

Before introducing the analytical expression for the reflection coefficient, it is worth
noting that the expression for Sy, is nearly identical to that of the other transmission
coefficient, except for the parameter Absio, which in this case accounts for the
influence of lines L1 and L3. The Syo fitting function is then:

2V k1ks

’512‘ = Ab812 . (4.10)
\/(1 + k1 + k2)2 + Q0252
Now, for the reflection coefficient, let’s start from its analytical expression:
ko — (1+k Qoo
sgav = B2 Ltk jQod) (4.11)

1+ k14 ko + jQod '
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Ve (GHZ) Qo kQ Ab821 Ab822 Ab812 q
8.8328 48950 | 0.5098 | 1031 | 1.1488 | 347.3 x 1076 | 0.01

Table 4.1. All the parameter estimated from the fit and their values.

In this case too we separate the real and imaginary part in order to calculate the
module of the function:

cav k22 — (1 + k1)2 — (Q05 + q22)2 . 2%2@05
Sya’ = 2 ¥ -7 5 53 (4.12)
(1+k1+k2) +Q05 (1+k¢1+k¢2) +Q0(5

where we also added a posteriori the term ¢ that is a parameter accounting for
the small asymmetry in the reflection coefficient, an effect that we will see more
specifically later on this work. We can now calculate the module of the complex
function, adding in this case too the term concerning the contribution of the lines to
which the scattering parameter is subjected:

‘522‘ = Absasv Re? + Im2. (4.13)

Having all the analytical expression and the data we therefore perform a simultaneous
fit of all the three scattering parameters together at each frequency step of the
experiment. In this thesis only one experimental point is presented but the work
was repeated identically and systematically for the other frequency points. Keeping
then k; fixed, through the fit of Fig. 4.3, we estimate all the other parameters useful
for the characterization of the cavity and of the lines of the cryostat such as v., Qo,

]{32, Ab821, Ab522, Ab812 and q.

Figure 4.3. Fit example of the scattering parameters to extract the cavity parameters and
the contribution of the lines.

What can be noticed is the larger noise on the Sy coefficient due to the large
attenuation of the combined effect of L1 and L3 together. For this reason, we chose
to perform the fit over a narrow frequency range centered around the resonance,
excluding the data points in the tails, which are significantly noisier. Despite this
restriction, the fit still provides a good agreement with Eqgs. (4.1).

A quantitative proof of the larger noise and of the different ways of amplifica-
tion/attenuation of the three measured coefficients can be seen instead in Tab. 4.1,
here the three gains of the three scattering parameters are reported in linear units,
together with the other parameters estimated from the fit. A discussion on the
extracted parameters of the resonant cavity such as v., (Jg, and ko can be found in
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Section 4.1.4 while in Section 4.2 the ¢ term added in Eq. (4.12) will be taken into
account.

This extracted numbers confirm the discussion we did in a qualitative way before:
from Abso; we can see the amplification done in L5, from Absos the combined effect
of amplification of L5 and attenuation of L3 and finally, from Absis it is evident the
effect of attenuation of L3 alone. This three multiplicative factors are the numbers
that will have the key role in obtaining the effective amplification of L5 alone which
will bring us to the conclusion of the calibration, but before we get into it let’s spend
a few more words on the fit procedure.

Figure 4.4. Zoom around the resonance of the fit on Ss;1, one with and one without the
estimated statistical error.

Figure 4.5. Zoom around the resonance of the fit on Sss, one with and one without the
estimated statistical error.

The fits for each of the scattering parameters of Fig. 4.3 are shown in Fig. 4.4,
Fig. 4.5 and Fig. 4.6, respectively. In each of the figures, on the left is shown a
simple zoom around the resonance omitting the error bars of the points for graphic
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Figure 4.6. Zoom around the resonance of the fit on Sy, one with and one without the
estimated statistical error.

purposes, while on the right error bars are present. In this way it can be noticed
more clearly the goodness of the fit done: the points are described very well by the
functions used, this can be seen above all from the So; and Sso parameters while
it cannot be stated with the same confidence for the Sis coefficient, it is in fact
immediate to see that the points in the latter figure are noisier.
Points with greater noise also mean larger error bars, it can actually be seen the
larger relative error in the right plot of Fig. 4.6 with respect to the other coefficients.
In all three cases, anyway, the error bars give us a quantitative estimate on the quality
of the fit: in all the three figures the experimental points lie on the theoretical curve
within the calculated error. The error was estimated from the residuals between the
experimental data points and the theoretical function, using the best fit parameters.
We then created a histogram of the residuals and fitted it with a Gaussian to extract
the mean and standard deviation. This procedure was carried out separately for
each scattering coefficient. However, only the histogram for Sis is shown below in
Fig. 4.7, as only the statistical error derived from S7o was used to estimate the
uncertainty on line L5, which will be discussed in more detail in the next subsection.
This choice was made because, as can also be seen from the plots, the relative
statistical error on Sis is larger than that of S3; and So. As a result, only the
uncertainty on Sio significantly contributes to the total statistical error on Gps.
Fig. 4.7 shows the histogram of the 52 residuals along with its Gaussian fit.
As expected, the mean is approximately zero, while the standard deviation is
o = 3.35 x 1077, which corresponds to a relative error of o, /z = 0.027 when taking
the experimental value at resonance as a reference.
Before proceeding with the discussion of the gain of L5 and its error, it makes sense
to at least mention the Iminuit library that we used to write the fit codes: it gives
us also the reduced x? from each fit as an index of its success and it is displayed in
all the figure regarding this topic in the S3; plot. This was one of my main works
during my internship at LNF, having had the responsibility to do the fit for each
experimental frequency of the QUAX run, modifying and adapting for this analysis
the starting code of Dr. Alessio Rettaroli.
We have now finally all the ingredients necessary to calculate the gain of line L5,
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Figure 4.7. Histogram of the residuals of the Si2 coefficient.

upon solving Eqgs. (4.1) the gain in dB of the readout line is:

(521 — S51") + (S22 — 553°) — (S12 — S15")

2 )
evaluated as the average of the spectrum. This gain was calculated for all the
subruns of the experiment, this means that for all the frequency we did the combined
fit of the three coefficient and then having estimated each time the parameters as

in Tab. 4.1, we calculated the gain of L5 at the resonance using Abso1, Absss and
Absio converted from linear to dB:

GL5 _ 2010g10(Ab321) + 20[09102(145822) — 2010910(14[)812) ‘ (4‘15)
The maximum spread of the G5 values within all the subruns is only 0.4 dB as
it can be seen in Fig. 4.8 , so we can reasonably consider the gain constant in the
evaluated frequency range and equal to the average value of G5 = 70.62 dB. This
value is referred at the input of the splitter so its not the value that we obtain from
Eq. (4.15) but we have to consider another contribution. Since the S parameters
are measured to and from the VNA ports, to calculate the right value for G5 the
contributions of the splitter (-3 dB) and of the cable from the splitter to the VNA
have been subtracted.

The measured gain through all the sub-runs is then:

Grs =

(4.14)

Grs = (70.62 £ 028,45 + 0.13,101) dB, (4.16)

where the systematic uncertainty is mainly due to the gain flatness of the recon-
structed G5, and the statistic uncertainty derives from the data scattering of the
S1a trace.
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Figure 4.8. Histogram of the gain on L5 estimated from all the sub runs of the QUAX run.

4.1.3 Systematic and statistical effects

In the last subsection we arrived to our goal of the calibration procedure: we
estimated the total gain on the output line (L5) of the cryostat. It’s now time
to discuss about the two errors that appear in Eq. (4.16). We have also already
discussed about the statistical error on the Sis parameter but we dealt only the
specific case of one of the experimental frequencies. We have to repeat each time
for each frequency the procedure that brought us to Fig. 4.7, then after each fit we
calculate the residuals between any Sis coefficient and its theoretical curve in order
to obtain the statistical uncertainty deriving from the data scattering. Instead of
plotting each histogram for each point and evaluating the statistical dispersion in
each case separated, we calculate the residuals for all the frequency points and then
we build the cumulative vector that contains the sum of all the individual residual
vectors corresponding to the experimental points.

Considering then all the sub runs, we obtain a resulting cumulative histogram shown
in Fig. 4.9, as expected it’s not that different with respect to the histogram of a
single frequency like the one of Fig. 4.7, but obviously having a lot more entries its
much more gaussian. Operating in this case too a gaussian fit, we obtain a mean
value of around zero with good approximation and a dispersion of ¢ = 3.6 x 1077,
which is in agreement with the value found for the single experimental point, but it
deviates a bit from that due to the fact that now we are considering all the sub runs
together.

Having all our experimental point and the fit parameters in linear form, this statistical
uncertainty found from the residuals is in linear units too. The way to estimate the
statistical uncertainty of G5 shown in Eq. (4.16) is to propagate the uncertainty
of Sis through Eq. (4.15), considering that we have to convert our values from
linear to dB units. Thanks to the discussion we did for the statistical uncertainty on
all the three coefficients, we now assume that only S15 contributes in a significant
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way to the propagated error because its relative error is greater than the other two
parameters. Therefore propagating the errors in Eq. (4.15), using 0 = 3.6 x 1077
found from the cumulative histogram, we have found the statistical uncertainty on
G5 shown in Eq. (4.16).

Figure 4.9. Cumulative histogram of the residuals of the Syo coefficients regarding all the
experimental point of the QUAX run.

We have to talk now about the systematic uncertainty too. The procedure to
estimate it is similar to the one just discussed but its source is different. The value
we obtained for G5 has been calculated from Eq. (4.14) and Eq. (4.15) but using
only the value of each parameters at the resonance. It can actually be seen from
Eq. (4.14) that we have to consider all the experimental points acquired from the
VNA and not only the points at the resonance. All this points around the resonance
and at the tails in fact contribute to the deviation from the gain flatness of the
reconstracted Gps.

In practice, the procedure consists in taking the difference between the experimental
data acquired with the VNA (Fig. 4.1) and the theoretical curves obtained using the
parameters from the fits (Fig. 4.2). This process was carried out for each sub-run,
but we focus here on the specific case analyzed in detail.

For each sub-run, the gain of line L5, G5, was calculated using Eq. (4.14), con-
sidering the full frequency range around the resonance. The results are shown in
Fig. 4.10, which presents the gain values as a function of frequency around the
resonance corresponding to v, = 8.8328 GHz. The value at resonance is highlighted
in a different color to emphasize the spread of the other points relative to this
central reference, which is used in the subsequent data analysis. It is immediately
apparent that the further we move from the resonance, the larger the spread in the
data becomes. This behavior is mainly due to the Sio coefficient, which, being the
noisiest, shows larger deviations from the fitted curve compared to Ss; and Soo.

To estimate the systematic uncertainty, we quantitatively evaluate the deviation
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Figure 4.10. Gain of L5 calculated for all the frequency points in a window around the
resonance (in yellow) of v. = 8.8328GHz .

from gain flatness. This is done by calculating the residuals with respect to the gain
at resonance, which is G5 = 70.68 dB at v, = 8.8328 GHz. The histogram of these
residuals, along with a Gaussian fit, is shown in Fig. 4.11. As expected, the mean
value is approximately zero, and the standard deviation is ¢ = 0.25 dB.

This value differs from the systematic uncertainty reported in Eq. (4.16) because
the total uncertainty requires considering all frequency points from the entire
measurement set. Therefore, Fig. 4.12 shows the final result of this procedure,
repeated for all 24 experimental points of this first run of the QUAX experiment.
Residuals were computed for each point and combined into a single cumulative
dataset.

The Gaussian fit of this cumulative distribution also yields a mean close to zero,
while the standard deviation slightly differs from the previous case. This combined
analysis gives a final value of o = 0.28 dB, consistent with the estimate in Eq. (4.16).
The systematic error estimated in this way includes also a statistical contribution
that should be subtracted. We retain it for a conservative estimate.

4.1.4 validation of the assumption on the fixed parameter k;

Let’s discuss briefly about the S7; parameter of the cavity. In the beginning we
should have used it as the third parameter instead of the Sis one in fact, we only
have three lines involved in the experimental setup so we need only three parameters
to resolve a system of three equations in three independent variables like Eqs. (4.1).
The input line L2 is shown in Fig. 3.13 but we used it only as an auxiliary line in
the subsequent axion raw data acquisition as we will see later. Returning to Si1, It
is more directly measurable than the Sio because it requires the use of only the line
L1. This parameter would have added an equation in the system of Eqgs. (4.1) like



4.1 Calibration procedures 69

Figure 4.11. Histogram of the residuals of all the different G5 (Fig. 4.10) with respect to
the central G5 calculated at the resonance point of v, = 8.8328GHz.

Figure 4.12. Cumulative histogram of the residuals of G5 regarding all the experimental
point of the QUAX run.

the one below:
St = 2Gr1 + 511" (ve, Qo k). (4.17)
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In principle an equation like this was much better both for resolving the system and
for the measurement procedure but in practice it turned out to be more challenging
to measure Si; than the Sis coefficient, although, as we showed, this latter one
resulted in a waveform with a lot of noise attached. However, the S1; parameter
was not discarded a priori but it was measured anyway and used for other purposes
than those expected. In fact, it was used for experimental verification of the fixed
coupling parameter k.

In Fig. 4.13 the S1; parameter of the frequency point we examined in depth (v, =
8.8328 GHz) is shown, thanks to the experimental setup of Fig. 3.13 we were able to
measure this parameter using only L1 to send the input via the VNA and to receive
the output using the same line.

Figure 4.13. Normalized reflection scattering parameter Sy;. It is not shown the directly
measured one, but the cavity S1; which doesn’t include all the contributions from the
lines.

The S{{" coefficient has the same aspect of S55" in Eq. (4.11) but with k; and
ko exchanged:
ki — (1 + ko + jQod)
14+ k1 +ko+JQod -

In Fig. 4.13 we notice that the experimental points don’t follow the theoretical
lorentzian curve expected, in fact we don’t have a hole corresponding to the resonant
frequency point but a flex. This behavior is most likely due to interference with
reflected signals down the coaxial cable of L1 in the frequency range of our interest
around the resonance. For this reason we should have parameterized the theoretical
curve that describes our experimental point in another way. This would have allowed
us to estimate all the expected parameters of the lorentzian curve as we did for Ssq,
Soo and Sto. It was preferred though to not proceed along this path and to make
an easier fit on the Si9 instead, in fact we needed only three of the four parameter
available in order to solve the starting system of Eqs. (4.1).

cav __
Sll -

(4.18)
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It is now appropriate to provide a justification for the assumption made in fixing
the value of the coupling parameter k. This parameter was kept equal to the value
k1 = 1.4 x 1073, consistent with previous simulation results. The motivations for
this choice lies in the fact that, during the experimental measurements, k; accounts
for the coupling between the resonant cavity and the fixed antenna, which was
only minimally inserted into the cavity. This configuration ensured that the total
coupling parameter k = k; + ko could be fully controlled by varying only ks, which
was adjusted using the ANPz111 linear stepper motor.

But how can we verify the validity of assuming such a small value for k1?7 This is
addressed through the analysis of the reflection coefficient Sy1, as shown in Fig. 4.13.
The experimental data points presented in this figure allows for a quantitative
assessment of the assumption.

Before discussing the results, it is important to clarify that the data shown in
Fig. 4.13 are not raw measurements. They are in fact normalized to obtain the
theoretical reflection coefficient S{{¥ rather than using the directly measured Sii,
which includes contributions from all gain and loss elements along the signal path.
This normalization is evident from the behavior of the function away from resonance,
where it approaches unity, as predicted by Eq. (4.18) and consistent with the
theoretical expression of S55° shown in Fig. 4.2.

The normalization procedure followed Eq. (4.17), using the raw S1; data and the
known attenuation given by 2Gp;. This attenuation was not obtained through
fitting, but rather through direct measurement of the combined losses in lines L
and L. This was made possible by employing the cryogenic switch (CR7) shown in
Fig. 3.13, which allows L; to be connected directly to Lo. The analysis also relies
on the assumption that L; and Lo are identical, assumption that is valid given that
the lines inside the cryostat are identical by design and that the coaxial cables from
the cryostat to the VNA are equal in length.

Having obtained the normalized reflection coefficient S{{V, we can now validate the
assumption on kj. This is done by estimating kj through Eq. (4.18) taking the value
of S{{¥ at resonance and the corresponding fitted value of ky at the experimental
frequency point we are considering in this analysis, as reported in Tab. 4.1. The
resonant point is particularly suitable for this estimation, as it corresponds to d = 0,
simplifying the analysis.

The result of this procedure confirms that, for this specific experimental point, the
simulated value k1 = 1.4 x 1073 is consistent with an upper bound of k; < 7 x 1073.
This supports the validity of the initial assumption and allows it to be extended to
the entire measurement run, given that the configuration of L.1 remained unchanged
across all sub-runs.

Before proceeding to the next stage of the experiment, it is appropriate to summarize
the key parameters extracted from the 24 datasets, with particular attention to the
coupling coefficients. Tab. 4.2 reports, for each sub-run, the values of the resonant
frequency ., the loaded quality factor @1, and the coupling coefficient k. The
frequency values clearly confirm that the resonance frequency of the cavity is tuned
over a 6 MHz range, spanning from 8.831769 GHz to 8.8377664 GHz, with 24 discrete
and equally spaced steps.

Together, the triplet v., Qr, ko provides a complete description of the resonator’s
electromagnetic behavior for each sub-run. The loaded quality factor @)y, is directly
measured from the VNA using the 3 dB bandwidth method, while the coupling coef-
ficient ko is obtained from the fits performed on the measured scattering parameters.
Since k; remains fixed throughout the data-taking procedure, knowledge of both @,
and the total coupling k = k1 + ko allows us to extract the intrinsic quality factor
Qo for each sub-run via the relation in Eq. (3.35).
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Ve (GHZ) QL /‘JQ
8.83176900 | 32345 | 0.5206
8.83203080 | 32228 | 0.519
8.83229550 | 32273 | 0.5082
8.83255580 | 32332 | 0.5141
8.83282190 | 32387 | 0.5097
8.83307310 | 32401 | 0.5078
8.83334500 | 32300 | 0.5097
8.83360070 | 32503 | 0.5058
8.83386200 | 32540 | 0.5075
8.83412790 | 32752 | 0.5014
8.83438580 | 32573 | 0.5026
8.83464620 | 32904 | 0.5005
8.83490660 | 32957 | 0.4984
8.83516350 | 32863 | 0.4951
8.83542850 | 32872 | 0.4947
8.83568970 | 33326 | 0.4881
8.83594630 | 33051 | 0.489
8.83620570 | 33056 | 0.4894
8.83646975 | 33104 | 0.4857
8.83672330 | 33584 | 0.4823
8.83698660 | 33529 | 0.4803
8.83724500 | 33659 | 0.4823
8.83750860 | 33639 | 0.4793
8.83776640 | 33450 | 0.4793

Table 4.2. Values of the resonant frequency v., the loaded quality factor @y, and the
coupling coefficient ks for each of the sub run of the experiment.

However, a critical point emerged during the calibration process. As can be observed,
the total coupling k is consistently around 0.5 for all sub-runs, which significantly
deviates from the optimal coupling value for axion haloscope operation, namely
k = 2. Although the cavity without the tuning rod had an intrinsic quality factor of
approximately Qg ~ 10° at cryogenic temperature, this value was degraded to about
50,000 due to dielectric losses introduced by the PEEK support and the imperfect
geometry of the rod itself.

As a consequence, what was originally designed to be an optimally coupled system
(k = 2) resulted, upon careful calibration, in a system with & ~ 0.5. This discrepancy
is further clarified by examining the two possible solutions of Eq. (3.35) for Qq, given
fixed @, and ki. Specifically, for the sub-run at v, = 8.8328 GHz, the expected so-
lution corresponding to the design coupling yields k2 = 1.968 and Qg = 96160, while
the actual solution supported by calibration data results in ko = 0.5098, Qg = 48950.
These two solutions are mathematically symmetric but correspond to physically
distinct cavity conditions, only one of which, unfortunately the suboptimal one, was
realized in our setup.

4.2 Data Acquisitions

The last section was primarily dedicated to the extraction of the gain of L5 that
will serve us to calibrate the power spectrum that we obtained through the data
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acquisition and processing that is the next topic we are going to discuss.

For each cavity frequency set moving the ANR240 motor, we collected with the
VNA the waveforms of the scattering parameters to perform the calibration and as
last step we started the raw data acquisition that lasted about 3600 s for each of
the sub runs.

The data acquisition, essentially, consists in recording the power coming from the
output line L5. During data acquisition, the switch CR7 is closed on line L2 to
avoid noise leakage through the under coupled port, the switch RT1 is closed on the
line L1 and the switch RT2 is closed on the switch RT3 which, in turn, is closed
on a 50 ohm termination. In this way the cavity is only connected through its
second port and L5 with the outside of the cryostat and with the data acquisition
section of the experiment. The splitter S1 in fact, allows to redirect the signal to
the downconversion and acquisition electronics we have described in Section 3.3.3.
Here, with an I-Q mixer we convert the frequency to the baseband, and the I and Q
quadratures are amplified by two different low-noise voltage amplifiers (x 103 factor,
10 MHz bandwidth) before being digitized by a 16-bit ADC board, which has a 2
MHz bandwidth and sampling of 2 MS/s. In each sub-run, the I and Q signals are
acquired for 4 seconds and saved to file. The total amount of files in each sub-run is
941, resulting in an integration time of At = 3764 s.

Simultaneously with the data acquisition, For each dataset of the 24 reported in
Tab. 4.2, we calculate the power spectrum by combining the quadratures as I -
1Q, computing the FFT and taking the squared module. This procedure is done
separately for each of the 941 files of each single rub runs. Therefore, the 941 power
spectra obtained from all the individual files are averaged to produce a single final
power spectrum, representing the mean of all the individual spectra. At the end of
the acquisition we end up then with 24 power spectra, one for each sub run. An
example of one resulting spectrum is shown in Fig. 4.14. In this picture the final
result of the procedure for one single sub run is present: more specifically the first
experimental point corresponding to the v, = 8.831769 GHz frequency. All the
spectra have a bandwidth of 2 MHz due to the ADC board used and are centered at
the LO frequency, which is always set at vpo = v. — 500 kHz for each single sub run.
This means that the cavity is situated exactly at 0.5 MHz, near the bump structure
that we are going to discuss more in detail soon.

First of all it is important to apply all the calibrations to the power spectrum, in fact
all the spectra calculated directly with the raw data contain all the amplifications. In
addition to the gain of L5 that we have previously estimated, there is another source
of gain/attenuation we have to deal with: the one of the downconversion electronics
from the splitter input to the ADC board. This latter one has been performed only
once and is valid for all sub runs, since it does not depend on the frequency change.
We send a known power at the splitter and measure the downconverted signal at the
DAQ input with a Spectrum Analyzer, which gives an absolute power. We repeat
the measurement at different LO frequencies to cover all the acquisition bandwidth
of the ADC board, from -1 to 1 MHz. In this way we obtain the calibration curve
that describes all the downconversion sector and which must be subtracted to the
raw power spectra.

The calibration curve is shown in Fig. 4.15, where the roll-off is due to the ADC
internal filters and then this specific trend reappears necessarily in the measured
spectrum of Fig. 4.14. In red the measured point described previously are presented,
the ones obtained by changing the LO frequency, while in blue the interpolation of
the experimental points that we will use to calibrate the measured power spectrum
is shown. The amplification values measured reflect what we expected from the
downconversion sector, being composed from coaxial cables, one mixer and two
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Figure 4.14. Averaged final power spectrum of the first experimental point corresponding
to the v, = 8.831769 GHz frequency.

Figure 4.15. Calibration curve of the downconversion electronics from the splitter input
to the ADC board. In red the experimental points are presented while in blue their
interpolation is shown.

low-noise voltage amplifiers with a factor of x103.
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It’s now time to subtract from the raw power spectrum all the source of gains we
estimated: the downconversion calibration curve and the gain G5 are subtracted
to the spectrum of Fig. 4.14 in order to obtain the calibrated power spectra, where
now the power level is therefore referred at the cavity readout port.

Figure 4.16. Final calibrated power spectrum with both the downconversion calibration
curve and the gain G5 subtracted.

In Fig. 4.16 is therefore shown the resulting calibrated power spectrum, with all
his peculiar features we discussed earlier such as its slope and the bump structure at
the right of the frequency of the resonant cavity that is situated at 0.5 MHz. The
slope in the power spectrum is due to aliasing of the thermal noise at the edge of
the Nyquist window, in fact since the sampling frequency of the ADC board used
is 2 MS/s we are at the limit of application of the Nyquist theorem because our
sampling frequency is exactly equal to the double of the maximum frequency (1
MHz) and is not greater.

The bump structure is instead due to the imperfect thermalization and isolation of
the rf components connected to the resonant cavity, this can be stated by operating
a more specific analysis that concerns all the power spectra of all the 24 sub runs.
The procedure we discussed for the first frequency experimental point is therefore
done for all the sub runs, leading to 24 final calibrated spectra that are shown in
Fig. 4.17. In the figure all the power spectra properly converted from dBm to Watts
and one extra spectrum are presented. This extra one is in black, and corresponds
to an additional run of measurements with the moving antenna decoupled from the
cavity. For this reason the decoupled run doesn’t present the bump structure we are
going to deal now.

The resonant cavity, being located at 0.5 MHz at each sub run, is situated for most
of the power spectra at one flex point; it can be seen in fact that the majority of
the sub runs present a bump at the right or left of the frequency of the resonant
cavity. The key point here is that across the dataset it can be observed that the
power spectra line shapes show features typical of Fano interference, as recently
reported in [62] where similar interference phenomena in microwaves measurements
were analyzed.

Fano interference is generally observed in wave scattering experiments and it
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Figure 4.17. All the 24 final calibrated spectra corresponding to all the 24 sub runs. An
extra spectrum is present, the black one, corresponding to the additional run with the
moving antenna decoupled. Picture provided by Dr. Alessandro D’Elia.

occurs whenever a resonantly scattered signal interferes with background paths.
Such paths are inherently present in microwave resonator measurement setups due
to port-to-port leakage, impedance mismatches, or other device imperfections.

A visual representation of this model is given in Fig. 4.18 where origin and symptoms
of Fano interference in microwave resonator measurements are shown.

Figure 4.18. [62] Left: a Schematic depiction of Fano interference in wave scattering
experiments. Right: Fano interference in single port reflection measurements.

In the left image is depicted a general scheme of a Fano interference in a wave
scattering experiments, a background path interferes with the signal scattered by the
measured resonant system. In the right image instead is shown a Fano interference in
single-port reflection measurements where the finite circulator isolation constitutes
a dominant background path.

A visual representation of the resulting effect of a Fano interference on the final
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measured signal is instead given in Fig. 4.19.

Figure 4.19. [62] Fano lineshapes: resonator responses can be asymmetric or even exhibit
peaks depending on ¢.

The resulting amplitude lineshapes then show dips, peaks, and different degrees
of asymmetry depending on the relative background phase ¢. These apparent loss
and gain curves illustrate the systematic distortions of the resonator response due to
Fano interference. In this sense therefore it can be explained the fact that starting
from a situation in which the bump resides at the right of the cavity resonant
frequency as in Fig. 4.16, the bump structure changes relative position with respect
to v, moving forward and considering one by one all the sub runs spectra. The
bump of the first experimental resonant frequency can be noted in blue in Fig. 4.17
together with all the other sub runs, going from an intermediate stage of a bump
centered in v, up to a final mirrored configuration of a bump at the left of the
resonant frequency; all following the scheme presented by the fano resonance in
Fig. 4.19.

We then observe the appearance of bump like structures in the power spectra, which
exhibit characteristic interference features. These are attributed to a combination of
effects. Primarily, the bump originates from an excess of power relative to the thermal
background, caused in this case by a thermal source inside the cavity operating at a
temperature Teay > Thase, (the “hot rod”). In the absence of additional effects at the
output port, such a contribution would result in a symmetric profile (i.e., without
Fano like distortions). However, it is likely that the circulator and/or the coaxial
cable connecting the circulator to the cavity are not perfectly thermalized at 20 mK.
Indeed, part of the noise originating from the 4 K stage propagates backward from
the HEMT amplifier and from the attenuators, which themselves act as thermal
sources. Furthermore, the cable is intentionally left unanchored to the mixing
chamber plate in order to remain flexible as it is lowered by the piezoelectric motor.
This mechanical freedom compromises thermal anchoring and, as a result, the cable,
circulator, or associated connectors can act as additional sources of thermal noise.
Such a thermal source would emit in any direction as it can be seen in Fig. 4.20. The
outgoing wave V,, propagating toward the output line L5, then interferes coherently
with the reflected wave V_, which is reflected by the cavity and redirected toward
L5.

To describe the resulting spectral shape, which combines a frequency dependent
term with a thermal background, we use an expression analogous to Eq. (1) in [62]:

. 2
P = kpTureAv |S11e @9 L 11" 4 kpTraw Av|So1|?, (4.19)
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Figure 4.20. [9] Schematic illustration of the coherent sum between a frequency-dependent
wave, S11V_, and a frequency-independent component, V., originating from the emission
of a non thermalized point (highlighted in red).

where S11 and So; are the usual scattering parameters, Teir. represents the effective
temperature of the circulator system, dt is the electrical delay, ¢ is a phase shift,
and Av is the spectral bin width (500 Hz in our case).

In Fig. 4.21, we compare three representative spectra, acquired at 8.8317690 GHz,

Figure 4.21. [9] Top: Experimental power spectra centered at 8.8317690, 8.8341279, and
8.8377664 GHz, after subtracting the spectrum acquired with the antenna decoupled
from the cavity. Bottom: Simulated power spectra at the same frequencies, generated
using Eq. (4.19).

8.8341279 GHz, and 8.8377664 GHz, with the corresponding theoretical curves (in
red) generated using Eq. (4.19) and the following reasonable parameter values:
Teive = 045K, Teay = 0.1 K, dt = 101ns, and, respectively, ¢ = —0.8,—0.1,0.9.
Although a rigorous fitting procedure is difficult to implement due to the strong
correlation among parameters, the comparison nonetheless provides a reasonable
estimate of the effective temperatures and system response.
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For the subsequent data analysis, for each frequency step, we estimate T, from the
output power of Fig. 4.17 at a reference frequency vro + 100 kHz, where 1/f noise
is negligible and still far enough from the cavity resonance, obtaining an average
value of 4.7 K. As just discussed, we observe that the power spectra line shapes
show features typical of Fano interference in addition to what we expected for our
system. Thanks to the model described in [62] we interpreted the bump structure as
due to a imperfect isolation and thermalization of the circulator, attenuators and
the rod inside the cavity, leading to effective temperatures greater than expected
from thermalization; in particular, we estimate an average temperature over all the
frequency steps of about T.q, ~ 100 mK and T, ~ 450 mK.

What is important though, is that this effect does not affect the extraction of the
power generated by axion conversion we will talk about in Section 4.3, since it adds
incoherently.

Before moving on to the last section it’s instructive to talk a moment about one
parameter we used in the fits of Section 4.1.2, which has to do with fano interference.
The parameter g, present in Tab. 4.1 and in the fit equation of the 553" equation, is
in fact a parameter that takes into account the small asymmetries in the reflective
coefficient. We can therefore interpret this asymmetries due to the fano interference
we discussed in this section, this interference is indeed visible though all the sub runs
in different manifestations: with respect to the relative background phase ¢ of the
fano resonance we have a different distortion on the measured reflective coefficients
Sog.

Below in Fig. 4.22 are then shown two examples of the different effect of the fano
interference on the Sso coefficient through all the sub runs. In particular the left
image is about the second frequency step of the experiment (v, = 8.83203080
GHz) while the right image is about the last sub run (v, = 8.83776640 GHz). The
measured Syo coefficient then shows the same trend of the power spectra we discussed
previously in this section, having the distortion first at the right of the resonance
and then at the left, this can be seen in fact from the fits done that in this two
particular cases have some errors in describing well the measured coefficients far
away from the resonant frequency point. This effect can be considered then due to
the fano interference that through all the frequency steps distorts the theoretical
S55° shape, that in this case we described by just adding the q variable in the fits.

Figure 4.22. Different effect of the fano interference on the Soo coefficient. At left the
second frequency step of the experiment while on right the last sub run. This distortion
through the sub runs follow the distortion on the power spectra.
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4.3 Data analysis

After describing all the calibration procedures along with the data taking and
processing, we’ve reached the point where we have the calibrated power spectra for
all the frequency points, each corresponding to a different axion mass value. This
last section is then dedicated to the final data analysis that consists in the extraction
of the power generated by a possible axion conversion. In the end we’ll end up with
a potential axion signal or, much more likely, with an exclusion limits for g,,, in
the mass range we took into account. In the subsequent discussion I will follow the
analysis presented in [9] because I haven’t put directly my hands on this part of the
experiment.

As discussed in Section 3.2.2, in presence of axion conversions a power surplus is
expected in the cavity power spectrum as given by Eq. (3.62). The first step is to
take all the 24 power spectra showed in Fig. 4.17 and to calculate the residuals by
subtracting each spectrum to a polynomial obtained with a Savitzky-Golay (SG)
filter [63] from the spectrum itself. A Savitzky—Golay filter is a digital filter that
can be applied to a set of digital data points for the purpose of smoothing the data,
that is, to increase the precision of the data without distorting the signal tendency.
This is achieved by fitting successive sub sets of adjacent data points with a low
degree polynomial by the method of linear least squares.

In our specific case we adopt a SG filter of the fourth order with a dynamic interval of
250.5 kHz (501 bins). For each sub run, the filter is applied in a window [v.—T", v +T]
of about 530 kHz, where I' is the cavity line width and is calculated as v./Qr.

An example of polynomial obtained from a SG filter from one of the datasets is shown
in Fig. 4.23. The image is about a section around the resonance of the ninth sub run
that corresponds to v, = 8.833862 GHz and it shows the data points measured and
calibrated together with the digital filter applied, it can be seen how the SG filter
smooths the data without distorting its trend. We in fact discussed in the previous
section the two main characteristic of the data tendency: the slope in the power
spectrum is due to aliasing of the thermal noise at the edge of the Nyquist window,
while the bump structure is due to the imperfect thermalization and isolation of the
rf components connected to the resonant cavity.

Calculated the residuals for each of the frequency steps, the next operation is to
normalize the residuals to the expected noise power o p;.e for each dataset, where
O Dicke 18 calculated using the Dicke radiometer equation [51]:

O Dicke = kBTsys VAVAL, (420)

in which kp is the boltzmann constant, Ty, is the system noise temperature we
estimated in the previous section, Av is the bin width (500 Hz) and At is the
integration time (3764 s).

The cumulative distribution of the normalized residuals obtained combining all the
sub runs, is then shown in Fig. 4.24. The data follow a Gaussian distribution, with
a mean value as expected equal to zero with good approximation and a standard
deviation compatible with 1.

The last step for the extraction of a possible axion signal is the following: for
each of the experimental resonant frequency measured of Tab. 4.2 there corresponds
a different value of axion mass m, in the range 36.5241 — 36.5510 peV. For each
axion mass then, we apply the Least Squares method to estimate the best value
Jay~ by minimizing

Nacan Noin [ Rasi = Sai(ma, 92,,)1° (4.21)

X = Z Z (@) ’

a=1 i=1 O Dicke
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Figure 4.23. [9] Zoom around the resonance of the FFT cavity power spectrum correspond-
ing to v, = 8.833862. The measured data are in blue while the SG filter is shown in red.

Figure 4.24. [9] Distribution of the cumulative normalized residuals, together with its
gaussian fit.

where the a index runs over the number of datasets (Nseqqn) and the index i runs over
the frequency bins of each power spectrum. S, ; and R, ; are instead the expected
power signal and the residuals for frequency bin ¢ and the dataset o. We have
just calculated R, ; for each of the power spectra while S, ; are calculated as the
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integral in the frequency domain of Eq. (3.62) multiplied by the spectrum of the
full standard halo model distribution [39].
Factorizing now Sy ; as Sq,i(Ma, 2

Giny) = ggWTm(ma), we can analytically minimize
Eq. (4.21) by solving

o 2
S5 =0 (4.22)
Gary
and we can calculate its uncertainty according to the formula:
1 10%?
== 4.23
ag 2 92¢7 (4.23)

where & = ggw for graphic purposes. Writing now > > = ZN scan ZN n for graphic
reasons t0o, we can finally minimize Eq. (4.21) in order to find g2 which is the

average squared coupling constant that incorporates the contributions of all the
frequency bins from all the datasets and is equal to:

? o [r 3 ]
2

where 02(g2) is its variance calculated as:

2

ZZ{ “(’a)ma} . (4.25)

9 Dicke

This procedure is therefore repeated for different values of m, in our range of interest
(36.5241 — 36.5510 peV), knowing that the detection of a power excess larger than
50 above the noise is required for a candidate discovery. In Fig. 4.24 can be seen
that no candidates fulfill this requirement since all the residues lies within the 40
range of the gaussian distribution. Since no candidates, which could be thought
of axion like signal, are found, the exclusion limits for g,y in this mass range is
determined with the following procedure.

To correctly estimate the limits regarding this experimental run to add to the
axion parameter space shown in Fig. 2.3, we need to account for the efficiency of
the filtering procedure used for the extraction of the axion signal. Following the
procedure discussed in [64], a Monte Carlo simulation is run numerically injecting a
fake axion signal with a known gian ccteq Nto simulated power-spectra with different

Ve. At this point Eq. (4.24) is used to estimate the g?njected for each injected signal,

obtaining then g2 ,.1aeq- Lhe efficiency is therefore determined from the relation
between ggalculated and g?njected. The cavity power spectra is instead simulated by
adding random Gaussian noise, with ¢ = 0 and ¢ = op;cke following a Gaussian
PDF, to the Savitzky—Golay filters previously obtained. Applying this procedure, a
detection efficiency of 0.845 is then estimated on g2, jureq fOr the SG filter.

Hence, after correcting for the estimated efficiency, the single sided upper limit on
the axion photon coupling is calculated with a 90% confidence level as in [65]. Using
a power constralned procedure for the g2 that under fluctuates below —o [66], the
upper limit gaw is finally obtained in the axion mass window of 27.02 neV centered
around 36.53764 pueV as shown in Fig. 4.25. This graph then shows the 90% single
sided C.L. upper limit for g,,~ as a function of the axion mass in our range of interest.
The violet solid curve represents the expected limit in the case of no signal while
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the yellow region indicates the QCD axion model band we discussed in Section 2.2.2.
The maximum sensitivity obtained with a 90% CL is ¢¢L < 0.882 x 10713 GeV~!,
value that is about 6 times larger with respect to the benchmark QCD axion level
of the KSVZ theory [24, 25]. With this run we therefore almost approach the QCD
axion model band, being this the final target of an experiment of this type that will
allow us to definitely probe a certain region of the axion mass described by a specific
theoretical model.

To conclude this work it is also instructive to show how this experimental run stands
out from all the others experimental limits displayed in Fig. 2.3. Fig. 4.26, realized
through [28], is then a broad view of axion exclusion limits set by haloscopes. The
blue vertical line indicates the search presented in this thesis and, as it can be seen,
is the only one active experiment present in the axion mass range we treated.

Figure 4.25. [9] 90% single sided C.L. upper limit for g, as a function of the axion mass.
In violet the expected limit in case of no signal while in yellow is shown the QCD axion
model band.

Figure 4.26. [9] Broad view of axion exclusion limits set by haloscopes. In blue the search
discussed in this thesis.
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Chapter 5

Conclusions

he work presented in this thesis lies within the context of dark matter research,

focusing on axions as a compelling solution to both a theoretical and cosmo-
logical problem. In particular, this study centered on the QUAX-LNF experiment,
a tunable haloscope currently under development at the Laboratori Nazionali di
Frascati, aiming to detect dark matter axions through their coupling to photons.
Starting from theoretical motivations, namely the Peccei Quinn mechanism as a
dynamical solution to the strong CP problem, axions emerge not only as a theo-
retically elegant solution, but also as a plausible constituent of cold dark matter.
As discussed in Chapter 2, the presence of a CP violating 6 term in the QCD La-
grangian as in Eq. (2.23), though experimentally constrained to be extremely small,
lacks a natural explanation within the Standard Model. The Peccei Quinn solution
promotes this parameter to a dynamical field, giving rise to a pseudo Goldstone
boson: the axion. Its mass and coupling constants are inversely proportional to the
symmetry breaking scale f, like in Eq. (2.37) and in Eq. (2.38). Astrophysical and
cosmological constraints have helped narrow the viable parameter space for QCD
axions, motivating the experimental effort to probe the peV-meV mass range.
In Chapter 3, I outlined the fundamental radiofrequency principles that underpin
haloscope experiments, focusing in particular on resonant cavities. Key theoretical
tools such as cavity parametrization (Section 3.1.2) and scattering matrices (Sec-
tion 3.1.3) were introduced to motivate the experimental design of QUAX. The
detection sensitivity depends critically on the cavity quality factor Q, the geometry
(via the form factor C), the magnetic field, and the thermal noise environment.
Chapter 4 described my personal contribution to the experiment. I had the oppor-
tunity to work directly on the experimental setup and take part in the first run of
the QUAX LNF haloscope. I contributed to the calibration of the RF lines, helped
implement and validate the fit procedure of the scattering parameters for extracting
the gain contribution of the distinct lines inside the cryostat (Section 4.1.2). I also
assisted in the data acquisition process (Section 4.2), where the system scanned over
a 6 MHz frequency interval, integrating the power spectrum in search of narrow
peaks consistent with axion to photon conversion.
Although no signal attributable to axion dark matter was detected, we derived
an upper limit on the emitted power, which was then translated into a constraint
on the axion photon coupling, leading to an exclusion plot in the g,,,-m, plane
as in Fig. 4.25. This experimental setup allowed us to exclude the existence of
axion dark matter in a mass range between 36.52413 and 36.5511 peV with axion
photon coupling down to 0.882 x10713 GeV~! with a C.L. of 90%. This result also
contributes to the global effort to probe the axion parameter space and complements
the regions explored by other haloscope experiments such as ADMX or HAYSTAC
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as it can be seen in Fig. 4.26.

As a last thing is illuminating to talk about the future step of the QUAX experiment,
the apparatus has in fact still much room for improvement. In the next future, the
sensitivity can be boosted employing a superconducting resonant cavity, enhancing
the intrinsic quality factor. Adding a Josephson Parametric Amplifier as a pream-
plification stage will break the noise temperature down by one order of magnitude.
Moreover, the rod design can be optimized:

e the amount of dielectric exposed to the electromagnetic mode of the cavity
can be reduced;

e the lower end of the bar can be placed directly in contact with the endcap of
the cavity eliminating PEEK on this side;

o the PEEK can be eventually substituted with sapphire.

To quantify, running such a setup for 1 hour with a quality factor Qo = 3 x 10°
at a frequency of 9 GHz and coupling k = 2, would reach an average value for the
coupling of ~ 2 x 1014 GeV~!, provided that the noise temperature is 0.5 K and the
magnet is brought to 9 T. This value is a factor less than 1.5 from the benchmark
KSVZ model.

Other future improvements may be the change of the acquisition ADC board, the
one used had in fact a 2 MHz bandwidth with a sampling frequency of 2 MS/s and
as discussed in Section 4.2 this situation led us to the limit of application of the
Nyquist theorem.

Logistical enhancements are also possible, we said that for each dataset of the 24
reported in Tab. 4.2 we calculated the power spectrum simultaneously with the
data acquisition. Actually, this procedure has been done through a subsequent
data manipulation with a Python script right before the analysis of the spectra
and after the acquisition through the ADC board. This sequential procedure
introduced significant waiting times, waiting for the script to calculate the averaged
spectra for each experimental point. This issue can be addressed through two main
improvements. First, the entire workflow can be automated so that raw data from
the ADC board are immediately pre processed and made available as power spectra.
Second, and more immediately realizable, the data processing script can be rewritten
in C++, a language recognized for its superior performance in this context. This
task was my final contribution during the internship: I rewrote the Python script in
C++ and verified its improved performance. When tested on the first sub-run of
the experiment, the C++4 version proved to be about five times faster.

All these improvements, if implemented, would enhance the QUAX experiment from
multiple perspectives, increasing its potential in the experimental search for axions.
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