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Abstract

The qubit, short for quantum bit, is the basic unit of information storage and process-
ing in quantum systems. It consists of a two-level system that exists in a superposition
of states 0 and 1 simultaneously. The optimization of these devices makes a significant
contribution to the field of quantum sensing, in which qubits act as extremely sensitive
sensors used in fundamental physics research. In particular, this work is part of the
Qub-IT project, which aims to develop a microwave single-photon counter for the search
for light dark matter.

The specific type of qubit used is the superconducting qubit, constructed from super-
conducting materials and operated at extremely low temperatures. We analyze a precise
superconductive qubit called transmon qubit, known for its relatively long coherence
times, which are crucial for performing quantum operations accurately. The transmon
qubit is composed of two conductive pads coupled with a Josephson junction. This con-
figuration forms an anharmonic oscillator, enabling the isolation of the two-level system.
Despite their advantages, transmon qubits are still susceptible to various sources of noise
and decoherence, such as electromagnetic losses due to interactions with the environ-
ment. These losses contribute to the decrease of the qubit coherence time, particularly
the relaxation time T1.

The aim of this work is to develop a design of a transmon qubit that minimizes elec-
tromagnetic losses and therefore maximizes the coherence of the qubit when it is coupled
with a resonant cavity. As a starting point, we conduct a complete characterization of a
transmon qubit produced at the Technology Innovation Institute in Abu Dhabi coupled
with a 3D resonant cavity. This is performed with a transmon spectroscopy and a time
domain characterization, from which we extract the principal parameters describing the
system such as the capacity between the pads Cexp = 46 ± 5 fF, the critical current of
the junction Iexp0 = 25± 1 nA, the qubit-cavity coupling gexp01 /2π = 93± 1 MHz and the
lifetime T exp

1 = 8.7± 0.7 µs.
Exploiting electromagnetic simulations, it is possible to provide quantitative estima-

tions of the losses experienced. These electromagnetic losses are described by the sum
of the participation ratios contributions from different spatial regions. We compare the
results of the experimental analysis with electromagnetic simulations using the ANSYS
simulation software, from which we estimate the principal parameters: the pads capacity
Csim = 56 fF, the qubit-cavity coupling gsim01 /2π = 97 MHz and the lifetime T sim

1 = 42
µs. The simulations results indicated a good match for the capacity and coupling, while
the lifetime appeared to be overestimated, possibly due to limitations in the numerical
mesh resolution of the simulations.
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However, this is a promising result that allows us to study different transmon designs
to improve its performances. The next steps involve modifying the shape and size of the
pads composing the qubit, starting with the Abu Dhabi qubit geometry, which features
rectangular pads of dimensions 144 x 556 µm2. We adjust the parameters describing
the rectangular geometry and explore other simple geometric shapes of the pads with
different parameters, aiming to estimate the electromagnetic losses and find the design
that minimizes them. A geometry with two circular pads of radius 500 µm is selected.
The larger dimensions of the pads allow for a greater distribution of the electromagnetic
field, resulting in a significant reduction in losses. The new design present a simulated
loss P(new) = 0.3 · P(Abu-Dhabi) and a simulated lifetime of T sim

1(new) = 63 µs. This design
is used to fabricate new devices at the CNR-IFN in Rome.

The development of the qubit is also carried out preparing the experimental setup
for the characterization of the Josephson junctions. In particular, we extract the critical
current of four junctions produced at the CNR-IFN in Rome through direct current
measurements. The estimated values are of the order of few µA for all the junctions.
The same measurement is made for two qubits fabricated with the new design developed
in this work.
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Chapter 1

Introduction

Quantum sensing is one of the most interesting fields of research in recent years.
Quantum sensors can achieve sensitivity levels far beyond those of classical sensors
and provide measurements with extremely high precision. This allows for the
detection of very weak signals with relevant applications in fundamental research.

The main component of quantum sensing is the qubit, short for quantum bit,
the basic unit of information storage and processing in a quantum system. It
is a two-level system that exists in a superposition of states 0 and 1 simultane-
ously. The most widely used qubits are the superconducting qubits, known for
their coherence and scalability properties [1]. They exhibit long coherence times,
meaning they can maintain their quantum states for relatively long periods, crucial
for making measurements over extended periods without losing quantum informa-
tion. Superconducting qubits are also relatively easy to manufacture and scale up
because they are compatible with existing semiconductor fabrication techniques.

The most promising superconducting qubit in terms of performance and sim-
plicity of design is the transmon qubit. It is composed of two conductive pads
coupled with a Josephson junction, a superconducting device used for many ap-
plications like microwave photon detection [2–4]. This configuration forms an
anharmonic oscillator, enabling the isolation of the two-level system[5]. The best
performance of a transmon in terms of coherence time is T1 = 500 µs [6]. Despite
their good performance, transmon qubits are still susceptible to various sources of
noise and decoherence, such as electromagnetic losses due to interactions with the
environment, which contribute to the decrease of the qubit coherence time.

In this thesis, we analyzed the data of characterization measurements of a
transmon qubit produced at the Technology Innovation Institute in Abu Dhabi
coupled with a 3D resonant cavity. We investigated the loss mechanisms and
found a method to give a quantitative estimation of the principal parameters of
a qubit, using electromagnetic simulations with ANSYS simulation software. The
next step was to optimize the design of the Abu Dhabi qubit in order to minimize
electromagnetic losses and improve the coherence time. This was achieved by
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10 CHAPTER 1. INTRODUCTION

modifying the shape and size of the pads composing the qubit and exploring other
simple geometric shapes of the pads. This led to the selection of a new design,
used to fabricate new devices at the CNR-IFN in Rome. In parallel, we studied the
main features of Josephson junctions, particularly extracting the critical current
of four junctions produced at the CNR-IFN in Rome through direct current mea-
surements. After making the same measurement for two qubits fabricated with
the new design developed in this work. All the measurements are carried out at
the National Laboratories of INFN in Frascati.

The thesis is structured as follows. In Chapter 2, we introduce the necessary
theoretical background for examining superconducting devices. In Chapter 3, we
show the principal mechanisms of parameters extraction from ANSYS simulations
and the development of qubit designs optimizing the losses. In Chapter 4, we
propose the results for the transmon characterization of the Abu Dhabi qubit
and for the direct current measurements of the Josephson junction and the qubit
fabricated at CNR-IFN. Finally, Chapter 5 concludes the study with a summary
of the results and a discussion of future research in the field



Chapter 2

Theory

2.1 Josephson junction

The Josephson junction (JJ) is the principal component of a superconducting
qubit. In this section the principal features and behavior of this device are pre-
sented. The Josephson junction is composed of two islands of superconductor
metals separated by a insulating layers. At the core of the Josephson junction’s
operation is the physical phenomenon of the Cooper pair tunneling effect between
the superconductors.

If the temperature is sufficiently high, above the critical temperature of the
superconductors, the junction behaves like a resistance R following Ohm’s law.
Below the critical temperature T0, the normal metal becomes a superconductor
made of Cooper pairs, behaving like a condensate of bosons [7]. The superconduc-
tor is describable by a macroscopic wavefunction of the form:

ψ =
√
ρeiϕ (2.1)

where ρ is the density of Cooper pairs and ϕ is the phase common to all the Cooper
pair in each superconducting island.

To visualize the energy level of a superconductor we use the Bose condensation
representation (figure 2.1). At zero temperature, Cooper pairs only occupy a
single ground level, since they behave as bosons. Above absolute zero some pairs
break up and individual electrons are excited to the conduction band, populating
it in a small fraction. The electrons in this band are called quasiparticles, so
the conduction band is also called quasiparticles state. The binding energy of a
Cooper pair Eg is shared by the two electrons, a single electron has a binding

energy Eg

2
= ∆, with ∆ the energy gap between the Cooper pair level and the

conduction band. In a Josephson junction, quasiparticles move between the two
superconductors if the applied potential exceed the value Vgap =

2∆
e
(Figure 2.1(b)).
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12 CHAPTER 2. THEORY

Figure 2.1: a)Tunneling of the two superconductors of a JJ. b) Tunneling between the
JJ superconductors in presence of external voltage at zero temperature.

2.1.1 The Josephson equations

The first Josephson equation relates the current I flowing trough the junction with
the phase difference δ = ϕ1 − ϕ2 between the superconductors 1 and 2:

I = I0 sin δ (2.2)

This equation states that the superconducting current flow up to a maximum
current I0, called critical current.

The second Josephson equation relates the voltage V drop across the junction
with the time derivative of the superconducting phase difference:

V (t) =
h̄

2e

∂δ

∂t
=

2π

Φ0

∂δ

∂t
(2.3)

with Φ0 =
h
2e

= 2.07 · 10−15 Wb is the quantum flux.
Another important relation is the Ambegaokar-Baratoff formula, indeed there

is a strong connection between the critical current I0 and the tunnel resistance Rn,
that comes out from the BCS theory [8]:

I0(T ) =
π∆(T )

2eRn

tanh
∆(T )

2kBT
(2.4)

with ∆ the energy gap of the two superconductors and T the temperature. The
expression is valid if the dimensions of the junctions are small compared to the
so-called Josephson length (order of tens of micrometers).

The Josephson junction acts as a non-linear inductance LJ . To obtain the
value of LJ we substitute the second Josephson relation (equation 2.3) inside the
derivative of the first one (equation 2.2) in the superconductive regime I < I0:

dI

dt
= I0 cos δ

dδ

dt
= I0

q

h̄
V (t) cos δ =

2πI0
Φ0

V (t) cos δ (2.5)
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therefore we can define the non-linear inductance depending on the Josephson
current:

L(I) =
Φ0

2πI0 cos δ
=

L0

cos δ
=

L0√
1− sin2 δ

=
L0√

1−
(

I
I0

)2 (2.6)

with L(0) = L0 =
Φ0

2πI0
the characteristic parameter of the junction called Joseph-

son inductance.
The energy collected from this inductor is defined as

EJ =

∫ t

−∞
I(t′)V dt′ =

I0Φ0

2π

∫ δ(t′)

0

sin δ dδ = L0I
2
0 (1−cos δ) = EJ0(1−cos δ) (2.7)

in which

EJ0 = L0I
2
0 =

h̄

2e
I0 =

Φ0I0
2π

(2.8)

is the Josephson energy.

2.1.2 I-V characteristic

The principal features of a Josephson junction can be described analyzing the I-V
characteristics (IVC). The IVC of a Josephson junction is antisymmetric in the
origin, therefore for simplicity we consider only the positive part. An example of a
real IVC from a DC current measurement is shown in Figure 2.2. We summarize
the different behaviors.

1. For the branch A to B, we have a potential V ≫ 2∆
e
, defining a normal state

characterized by the motion of electrons. The current is proportional to the
voltage as I = V

R
, with R being the normal resistance.

2. In the branch B to C, the applied voltage is V > 2∆
e
, above the Cooper pairs

breaking voltage. This results in a tunneling given by single electrons in the
quasiparticle state.

3. The branch C to D the potential is V < 2∆
e
. It is characterized by motions of

quasiparticles, since some individual electrons already occupy the conduction
band due to a non-zero temperature.

4. In the branch D to E, the voltage is V < 2∆
e

or null, and we have only
supercurrent with the motion of Cooper pairs between the superconductors,
defined by the two Josephson effects in Equations 2.2 and 2.3. This is called
also zero-voltage stage.

5. Increasing the bias current, we have a jump from point E with V < 2∆
e

or

null, to point F with V > 2∆
e
, since the current exceeds the critical current

of the junction.
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6. The branch F to A is equivalent to A to B in the normal state.

The IVC presents two important effects: the presence of a retrapping current
Ir, since the current in the branch C to D never goes exactly to zero, and the
presence of self-heating due to the electrical components. This is evidenced by a
small curve towards higher potential in the B to C branch of the IVC. This effect
is taken into account by measuring the value of the critical potential Vc, which
corresponds to the critical current of the JJ.

Figure 2.2: I-V characteristics for a real Josephson junction. The red arrows indicate
the succession of the IVC during a current swap.

2.1.3 Resistively and capacitively shunted Josephson junction (RCSJ)

A real Josephson junction can be modeled with a circuit as described in the resis-
tively and capacitively shunted Josephson junction (RCSJ) model [9]. The RCSJ
model allow us to study the response of a Josephson junction to external driving
sources quantitatively and to give a better description of the IVC of a JJ. In this
case, we want to study a JJ crossed by an external DC current I with potential V
across the JJ. The circuit that represents this model is shown in Figure 2.3. It is
composed by the ideal junction J in parallel with a resistance R, a capacitance C
and a current noise source IF . Each component represents a different contribution
of the driving current:

• The resistance represents a dissipation current IR, due to conduction cur-
rents and quasiparticle tunneling currents. The resistance is voltage and
temperature dependent, for the RSCJ model we consider it constant.

• The capacity represents the displacement current IC due to the finite capac-
itance C between the junction between the two superconductors. The DC
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current that causes a variation of the potential V across the JJ influence the
charge distribution at the interface layers (∂V

∂t
̸= 0).

• The current noise source represents the fluctuation current IF , due to the
thermal motion.

Figure 2.3: The resistively and capacitively shunted Josephson junction circuit driven
by a current.

The total current given by the Kirchhoff law is composed by the three terms
of the electronic components of the circuit:

I = IR + IC + IJ =
V

R
+ C

∂V

∂t
+ IJ (2.9)

in which ϕ the phase of the superconductor. Substituting the two Josephson
relations (Equations 2.2 and 2.3) the formula becomes

I =
h̄

2e
C
∂2ϕ

∂t2
+
h̄

2e

1

R

∂ϕ

∂t
+ I0 sin(ϕ) (2.10)

with I0 the critical current of the junction. To describe the circuit, we manipulate
the formula introducing the plasma frequency ωp and the quality factor Q of the
junction:

I

I0
=
∂2ϕ

∂τ 2
+

1

Q

∂ϕ

∂τ
+ sin(ϕ) (2.11)

with τ = ωpt a dimensionless parameter. The plasma frequency for I = 0 is

ωp =

√
2eI0
h̄C

(2.12)

The quality factor is Q = ωpRC, it gives a quantitative indication of the dissi-
pation. In general, two different solutions of equation 2.11 always exist for every
value of Q: For I < I0, when

dϕ
dt

= 0, the solution is I = I0 sin(ϕ), corresponding

to having only supercurrent. For I ≫ I0, the solution is I = V
R
, indicating only

normal current.
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Figure 2.4: I-V characteristic for an ideal junction in overdamped (up-left), underdamped
(up-right) and intermediate (down) regime. βc is the Stewart-McCumber parameter,
equal to Q2. Figures from [9].

The intermediate solutions depend on the value of Q, with the upper and lower
limits corresponding to the overdamped and underdamped regimes, as shown in
Figure 2.4. These regimes are determined by the capacitance (C) and resistance
(R) components, which define the characteristics of the JJ.

• Overdamped regime: This regime is reached for Q≪ 1, corresponding to
small capacitance and/or resistance values. The IVC of this regime is shown
in Figure 2.4 (upper-left). It exhibits a single branch with no hysteretic
behaviors: for both decreasing or increasing the current from zero, the curve
smoothly transitions between the zero-voltage state and the finite voltage.

• Underdamped regime: It is reached for Q ≫ 1, corresponding to large
capacitance and/or resistance. The IVC is presented in Figure 2.4(up-right).
Increasing the current, the junction remains in the zero-voltage stage until
it jumps to the finite voltage. But decreasing the current, the curve follows
the diagonal line into the origin.

• Intermediate regime: For Q ≥ 1, we have an intermediate case. As
shown in Figure 2.4(down), the IVC presents a hysteretic curve similar to
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the underdamped regime, but in this case, decreasing the current, the curve
goes to V = 0 smoothly, reaching a retrapping current Ir.

For a complete description of the IVC of a JJ, we must consider the depen-
dence of the resistance on voltage and temperature. In general, the formula of the
resistance for quasiparticles is given by [10]:

Rqp = R · e
∆

kBT (2.13)

with ∆ being the energy gap and T the temperature. This equation shows that
Rqp becomes extremely high at low temperatures, since the quasiparticle density
exponentially decreases with temperature.

We assume the RCSJ-model working with two different resistances, R for V >
2∆
e
and Rsg for V < 2∆

e
, as we see in Figure 2.5. In which R is the normal resistance

and Rsg the subgap-resistance, i.e. the resistance in the superconductive regime.
This is given by the slope of the voltage dependence for currents just after the
critical current.

Figure 2.5: I-V characteristic of a JJ considering Rsg. Figure from [10].

2.1.4 Titled-washboard model

To better understand the Josephson junction behavior and mechanisms, we com-
pare the RCSJ model to a a mechanical analogue model: the tilted-washboard
model. The differential equation that describe the RCSJ circuit has the same fea-
tures of a forced pendulum in classical mechanics with mass M , damping η and
potential energy U . The forced pendulum is described by equation

M
d2x

dt2
+ η

dx

dt
+∇U = 0 (2.14)

while the RCSJ equation 2.11 can be rewrite showing the potential term:
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h̄

2e
C
∂2ϕ

∂t2
+
h̄

2e

1

R

∂ϕ

∂t
+ I0

(
sin(ϕ)− I

I0

)
= 0 (2.15)

therefore
h̄

2e
C
∂2ϕ

∂t2
+
h̄

2e

1

R

∂ϕ

∂t
+

∂

∂ϕ

[
EJ

(
1− cos(ϕ)− I

I0

)]
= 0 (2.16)

with EJ the Josephson energy (from Eq. 2.7). Comparing the equation 2.16 with
the 2.14, on the first two therms are the acceleration of the phase (instead of the
position in the classical oscillator) and the dissipation term due to the capacitance
with M = h̄

2e
· C and η = h̄

2e
· 1
R
. The last term is the force potential U (without

constant terms):

U(ϕ, I) = −EJ

(
cos(ϕ) +

I

I0

)
(2.17)

This potential is called the washboard potential. A plot of the potential as a func-
tion of the phase ϕ for different driving currents is shown in Figure 2.6. The driving
current gives different inclinations of the potential corresponding to different mech-
anisms of the junction. In this analogue, the overdamped regime corresponds to
small mass (M ∝ C) and large damping (η ∝ 1

R
), while the underdamped regime

has large mass and small damping.

Figure 2.6: Washboard potential for different driving currents. Image from [9]

In the following, we make a discussion about the motion of the phase (treated
as a massive particle) on the potential when the driving current I into the junction
increases and decreases [9].

Decreasing the current: The first case is applying a current larger than the
critical current I > I0 and moving it down to zero. The strong tilt of the potential
moves the particle freely down the potential, but reducing the current reduces the
tilt of the potential until at I < I0 local minima are obtained.

In a regime near overdamping, the particle will immediately stop its motion
and will be trapped in one of the local minima. The junction voltage goes to zero
immediately when the applied current is reduced below I0. But for a regime near
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underdamping, the massive particle has sufficient kinetic energy and can easily
move down the potential well even if there are local minima. To stop the particle,
the potential is almost horizontal, meaning that we have to reduce the current
almost to zero to have zero voltage.

Increasing the current: The second situation consists of starting with I = 0
and increasing the current over I0.In both overdamped and underdamped cases,
the voltage remains zero until the critical current is reached. The reason is that
the kinetic energy of the particle is zero, therefore it doesn’t move down the po-
tential. For values above the critical current, the behavior is different again: near
overdamping, the particle is moving slowly, and in the underdamped case, the
particle immediately accelerates to an average velocity.

2.2 Qubit

A qubit, short for quantum bit, is the basic unit of quantum information in quan-
tum computing, analogous to a classical bit in classical computing. The qubit is a
two-level system that can exist in a superposition of states 0 and 1 simultaneously,
unlike classical bits that can only be in one of them.

The superconducting qubit is a type of qubit engineered from superconducting
materials, cooled to extremely low temperatures. There are several types of super-
conducting qubits, in this work we analyze the transmon qubit. It is known for its
relatively long coherence times which are crucial to perform quantum operations
accurately.

The transmon qubit is composed by a Josephson junction set between two
conductive pads. It is possible to analyze a superconductive qubit from a circuit
point of view, this technique is called circuit QED (cQED). The qubit is modeled
as a LC circuit, with a non-linear inductance given by the Josephson junction and
a capacity given by the two conductors.1

An LC circuit can be treated as a harmonic oscillator in quantum mechanics,
defined by distinct energy levels that are uniformly spaced from each other. To
create a two-level system it is necessary to introduce anharmonicity in the energy
levels to distinguish the ground state from the first excited one. In this section we
explain how this is achieved specifically for a transom qubit [11].

2.2.1 Quantization of a LC circuit

Initially, we quantize a classical LC circuit (Figure 2.7) as an harmonic oscillator
with a Lagrangian description [12]. The energy stored in the capacitance C and

1It is important to notice that also the Josephson junction has a finite capacity but comparing it with
the capacity of the pads, it is negligible for a transmon qubit.
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Figure 2.7: The qubit circuit that consist of a capacity in parallel with an inductance.
We start quantizing a LC circuit (at start JJ is a lineal inductance L) and after we
substitute it with the Josephson junction JJ, to create anharmonicity.

inductance L depends on the flux variable defined as:

Φ(t) =

∫ t

−∞
dt′V (t′) = LI (2.18)

in which I = dQ
dt

is the current and Q the charge. The energy is given by (δE =
V δQ):

E(t) =

∫ t

−∞
dt′V (t′)I(t′) (2.19)

that for the single components is:

Capacity: EC =

∫ t

−∞
dt′V

dV

dt′
=
C

2
V 2 =

Q2

2C
, (2.20)

Inductance: EL =

∫ t

−∞
dt′L

dI

dt′
I =

L

2
I2 ≡ Φ2

2L
. (2.21)

In a classic discussion we interpret the term relating to capacity as a kinetic
energy while that relating to inductance as potential energy. In this context we
write the classical Lagrangian of the system:

L = EC − EL =
Q2

2C
− Φ2

2L
=
C

2
V 2 − Φ2

2L
=

1

2
Cϕ̇2 − ϕ2

2L
(2.22)

Applying the Eulero-Lagrange equations:

d

dt

(
∂L
∂Φ̇

)
− ∂L
∂Φ

= 0,

we obtain the equation of motion:

CΦ̈ +
Φ

L
= 0,
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which is the equation of motion of a harmonic oscillator:

Φ̈ + ω2Φ = 0, where ω =
1√
LC

.

with ω the pulse frequency of the oscillator. To move to a quantum description of
the system, we pass to the Hamiltonian formalism. Let’s calculate the conjugate
momentum:

Π =
δL

δΦ̇
= CΦ̇ = CV = Q,

thus we calculate the Legendre transform:

H = ΠΦ̇− L =
Q

C
−
(
Q2

2C
− Φ2

2L

)
=
Q2

2C
+

Φ2

2L
; (2.23)

now impose canonical quantization. We promote (Φ, Q) → (Φ̂, Q̂) to operators
and express them in terms of the creation and annihilation operators:

Φ̂ =

√
h̄

2Cω

(
â+ â†

)
,

Q̂ =

√
2Cωh̄

2i

(
â− â†

)
.

imposing the following commutation rules:

[Φ̂, Q̂] = ih̄, ⇒ [â, â†] = 1.

The Hamiltonian of the LC harmonic oscillator is

H = h̄ω

(
n̂+

1

2

)
(2.24)

where n̂ is the number operator n̂ = a†a and the eigenstates |n⟩ follow the relations:

a|n⟩ =
√
n|n− 1⟩ a†|n⟩ =

√
n+ 1|n+ 1⟩, (2.25)

2.2.2 The transmon qubit

The next step is define the Hamiltonian for a qubit. The qubit has a Josephson
junction with energy given by the equation 2.7. We write the Lagrangian for a
qubit as:

L = EC − EJ =
1

2
Cϕ̇2 + EJ0(1− cos δ̂) (2.26)
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with δ the phase difference between the superconductors of the JJ. The conjugate
variable is:

Q =
∂L
∂ϕ̇

= Cϕ̇

The Hamiltonian H = Qϕ̇− L is:

H =
Q2

2C
− EJ0(1− cos δ) (2.27)

Now, we write the Hamiltonian considering that the qubit is in a superconductive
system:

H = 4ECn
2 + EJ0(1− cos δ) (2.28)

in which

n = Q̂
2e

is the number of Cooper pairs passing trough the junction;

δ = 2π
Φ0
Φ is the phase difference of the superconductors;

EC = e2

2C
is the energy required to add an extra electron to the circuit’s

capacitance;

A transmon qubit works in the limit where EJ0/EC ≫ 1. In this limit, the
system is less sensitive to charging noise. Furthermore, the eigenstates of the phase
operator are first-order eigenstates of energy. Expanding for small delta:

V (δ) = EJ0(1− cos δ) =
EJ0

2!
δ2 − EJ0

4!
δ4 +

EJ0

6!
δ6 +O(δ8);

note that the first term generates the harmonic potential. Truncating the expan-
sion at the second term, the resulting transmon qubit Hamiltonian is:

H = 4ECn
2 +

EJ0δ
2

2
− EJ0δ

4

24
(2.29)

We promote the operators (n, δ) → (n̂, δ̂) and, as in last section, we write the
terms with the creation and annihilation operators:

δ̂ =

√
ζ

2
(a+ a†), n̂ = − i√

2ζ
(a− a†), ζ =

√
8EC

EJ0

(2.30)

With these definitions, the first two terms of equation 2.29 correspond to Ĥ0 =
h̄ω0

(
â†â+ 1

2

)
of a quantum harmonic oscillator, that oscillate at frequency ω0.

The third term of the Hamiltonian is the anharmonic correction.
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Figure 2.8: (a) Circuit for LC-oscillator, with inductance L in parallel with capacitance
C. The superconducting phase on the island is denoted ϕ, referencing ground as zero.
(b) Energy potential for the QHO, where energy levels are equidistantly spaced ∼ ωr

apart. (c) Josephson qubit circuit, where the nonlinear inductance LJ (represented with
the Josephson-subcircuit in the dashed orange box) in parallel with a capacitance Cs.
(d) The Josephson inductance reshapes the quadratic energy potential (dashed red) into
sinusoidal (solid blue), which yields non-equidistant energy levels. This allows us to
isolate the two lowest energy levels |0⟩ and |1⟩. Figure from [11].

For a transmon, the eigenvalues are no longer equidistant: in Figure 2.8, we
notice that the states |0⟩ and |1⟩ are separated by an energy h̄ω01, while the states
|1⟩ and |2⟩ by an energy h̄ω12 = h̄ω01 + α with α < 0. If h̄ω01 is reasonably large,
we can consider only the states |0⟩ and |1⟩.

We explicitly express the operator definitions from Equation 2.30 in the Hamil-
tonian 2.29, resulting in:

Ĥ = h̄ω0

(
â†â+

1

2

)
− EC

12

(
â+ â†

)4
(2.31)

To simplify the situation, we consider the free Hamiltonian moved to a rotating
system. Here we keep only the interaction terms that evolve slowly over time
(rotating wave approximation RWA). The operator that performs the rotation is
then:

Û = eiĤ0t,

which, applied to the creation and annihilation operators, generates a time-dependent
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phase:
â→ e−iω0tâ, â† → eiω0tâ†.

This means that all terms that have a different number of â and â† in â + â† are
on average zero, only the terms with an equal number survive. Considering the
commutation relation [a, a†] = 1 we obtain:

(â+ â†)4 = 6â†â†ââ+ 6â†â+ 3 (2.32)

Finally, substituting this result in 2.31 the Hamiltonian for a transmon qubit is:

H = h̄ωT a
†a+

α

2
a†a†aa, (2.33)

where ωT is the transmon frequency:

h̄ωT = h̄ω0 − Ec =
√

8EJ0Ec − Ec. (2.34)

The anharmonicity α (α < 0) and the relative anharmonicity αr are defined as:

α = E12 − E01 = −EC αr = α/E01 ≃ −
√

Ec

8EJ0

(2.35)

with Eij = h̄ωij the energy difference between the consecutive states i and j,
depending on the difference of the relative pulse frequencies ωij = ωj − ωi.

This results are valid for a transmon considering only the first anharmonic term,
the more general solution for |n⟩ states is given by time independent perturbation
theory. We obtain the same results perturbing the Hamiltonian 2.31 at the first
order:

En = E0
n −

Ec

12
⟨n|(a+ a†)4|n⟩ (2.36)

|n⟩1 = |n⟩ − Ec

12

∑
k ̸=n

⟨k|(a+ a†)4|n⟩
h̄ω0(n− k)

with En is the energy of state n and |n⟩1 the state at the first order of the pertur-
bation theory. Using the relations 2.25, the energy of the state n is given by:

En = h̄ω0

(
n+

1

2

)
− Ec

12
⟨n|
(
a+ a†

)4 |n⟩ (2.37)

from this equation we find the same solutions of the RWA approach. In general
the energy difference En,n+1 between consecutive levels |n⟩ and |n+ 1⟩ is:

En,n+1 = h̄ωn,n+1 = En+1 − En = h̄ω0 − (n+ 1)Ec (2.38)
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The first energy levels of the Hamiltonian are the following:

Ĥ |0⟩ = 0,

Ĥ |1⟩ = h̄ωT |1⟩ ,
Ĥ |2⟩ = (2h̄ωT + α) |2⟩ ;

In some context, for simplicity, we can consider a transmon circuit as a two-
level system which can be described as a pseudo-spin with the Pauli operator

σz =

(
1 0
0 −1

)
:

Ĥq = − h̄ωq

2
σz (2.39)

where ωT = ωq = ω01 is the lowest transition frequency in the transmon circuit.

The eigenstates are {|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
} with eigenvalues {E|0⟩,|1⟩ = ∓ h̄ωq

2
}.

2.2.3 Block sphere

First we introduce a geometric representation of the space of a two level quantum
system useful to visualize the transom dynamics: the Bloch sphere (Figure 2.9).
A qubit state ψ can be written as the complex superposition of two the states |0⟩
and |1⟩, which form an orthonormal basis for the Hilbert space:

|ψ⟩ = cos

(
θ

2

)
|0⟩+ i sin

(
θ

2

)
eiϕ|1⟩, (2.40)

We introduce the following unit vector in 3 dimensions a⃗ = (sin θ cosϕ, sin θ sinϕ, cos θ),
and we draw the sphere in R3; in this way, the generic state is identified by a single
point univocal on the sphere and it is determined by the angles θ and ϕ. The three
Pauli matrices parameterize the spin and the three axes of the Bloch sphere can be
associated with the spin. The spin vector is given by σ⃗ = (σx, σy, σz). Considering
the generic state, we define the spin along a generic direction σ⃗ · a⃗:

σ⃗ · a⃗ = cosϕ sin θσx + sinϕ sin θσy + cos θσz;

|ψ⟩ is an eigenstate of σ⃗ ·⃗a with eigenvalue 1, that is, σ⃗ ·⃗a|ψ⟩ = |ψ⟩. A representation
of the Bloch sphere is shown in Figure 2.9.

There exists a class of unitary operator that implements a rotation of angle λ
around the direction identified by a⃗. They are given by

Ra⃗(λ) = e−iλ
2
(a⃗·σ⃗) = cos

(
λ

2

)
I − i sin

(
λ

2

)
σ⃗ · a⃗ (2.41)

with I the 2×2 identity matrix.
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Figure 2.9: The Bloch sphere that represent a qubit in a 3D space. The |ψ⟩ is a generic
state of the qubit.

This representation is useful to visualize the dynamics of a qubit. In particular,
we introduce the density matrix to give a description of the qubit interacting with
the environment. The density matrix is defined as

ρ =
∑
i

pi |ψi⟩ ⟨ψi| (2.42)

with pi the probability of being in state |ψi⟩. If the matrix has only one state it is
called a pure state |ψ⟩ = α |0⟩+ β |1⟩ and the density matrix is

ρ = |ψ⟩ ⟨ψ| =
(
|α|2 αβ∗

α∗β |β|2
)

(2.43)

2.3 Resonant cavity

A resonant cavity is a closed conductor containing electromagnetic waves reflecting
back and forth between the cavity walls. The electromagnetic field inside the cavity
can be excited and can take on different configurations, called resonant modes.
These modes are determined by the cavity’s geometry and boundary conditions.

Transmission lines consisting of two or more conductors can support transverse
electromagnetic (TEM) waves. While waveguides consisting of a single conductor,
support transverse electric (TE) and/or transverse magnetic (TM) waves, char-
acterized by the presence of longitudinal magnetic or electric field components.
A rectangular cavity is constructed from closed sections of waveguide, short cir-
cuited at both ends in order to form a closed box. Each mode has its own resonance
frequency, the cavity support multiple modes simultaneously.



2.3. RESONANT CAVITY 27

2.3.1 Cavity 1D

We first introduce cavities in one dimension. The electromagnetic modes of a cavity
are described by Maxwell’s equations. For a one-dimensional cavity, we consider
a pair of infinite perfect conducting walls separated by the distance L along the
z-direction, so that fields only depend on the z-coordinate. For an empty cavity
with no external source the Maxwell equations are[13]:

∇× E⃗ = −∂B⃗
∂t

→ ∂Ex(z, t)

∂z
= −∂By(z, t)

∂t
(2.44)

∇× B⃗ = ϵ0µ0
∂E⃗

∂t
→ −∂By(z, t)

∂z
= ϵ0µ0

∂Ex(z, t)

∂t
(2.45)

∇ · E⃗ = 0 → ∂Ex(z, t)

∂x
= 0 (2.46)

∇ · B⃗ = 0 → ∂By(z, t)

∂y
= 0 (2.47)

with E⃗ = (Ex, Ey, Ez) and B⃗ = (Bx, By, Bz) the electric and magnetic fields and
µ0 and ϵ0 the vacuum permeability and permittivity. Applying the boundary
conditions Ex(z = 0, t) = 0 and Ex(z = L, t) = 0, the solution of electric and
magnetic fields inside the cavity are:

Ex(z, t) = Eclq(t) sin(kz) (2.48)

By(z, t) = Ecl
µ0ε0
k

q̇(t) cos(kz). (2.49)

with Ecl the normalization constant, given by: Ecl =
√

2ω2
c

ε0V
. The parameter V is

the effective volume of the cavity and k = mπ
L

is the wave number corresponding

to the frequency ωc = k√
µ0ε0

. The number m is an integer and define a specific

mode of the cavity. A representation of the electric and magnetic field is shown in
Figure 2.10.

The aim is quantize the electromagnetic field, promoting the promoting canon-
ical position q and canonical momentum p to operators. The total electromagnetic
energy (per unit of volume) stored in one mode can be written as:

H =
1

V

∫
V

(
ε0
2
|Ex(z, t)|2 +

1

2µ0

|By(z, t)|2
)
dV (2.50)

by substituting Equations 2.48 and 2.49 into 2.50, the total energy is equal to:

H =
1

2

(
p2(t) + ω2

cq
2(t)
)

where p(t) = q̇(t), the energy of a mode is analogous to the energy of a classi-
cal harmonic oscillator. The quantize Hamiltonian is defined by promoting the
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Figure 2.10: Schematic representation of a 1D cavity composed by two infinite walls and
the relative electric (red line) and magnetic (blue line) fields. Figure from [13]

canonical parameters to be operators (p, q → p̂, q̂). The transition to a quantum
mechanical description results in quantization of the energy spectrum for each

mode. We can define operators b̂ and b̂†, the annihilation and creation operators
for a photon in the corresponding mode of the cavity (h̄ = 1):

b̂† =
1√
2ωc

(ωcq̂ + ip̂) (2.51)

b̂ =
1√
2ωc

(ωcq̂ − ip̂) (2.52)

with the commutation relation [b, b†] = 1. The solution for electric and magnetic
field results:

Êx(z, t) = E0(b̂+ b̂†) sin(kz) (2.53)

B̂y(z, t) = E0
µ0ε0
k

(b̂− b̂†) cos(kz) (2.54)

with E0 =
√

h̄ωc

2ε0V
the normalization constant. The Hamiltonian is the harmonic

oscillator:

Ĥ = h̄ωc(b̂
†b̂+

1

2
) = h̄ωc(n̂+

1

2
), (2.55)

Ĥ|n⟩ = En|n⟩, (2.56)

with n the number operator, that define the number of photon inside the cavity.
The energy eigenstate for a single-mode cavity are {|n⟩} and the corresponding
eigenvalues are {En = h̄ωc(n+ 1

2
)}.
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Figure 2.11: rectangular cavity resonator, and the electric field variations for the TE101
and TE102 resonant modes.

2.3.2 Rectangular 3D cavity

We consider a cavity formed by a length d of rectangular waveguide shorted at
both ends (z = 0, z = d), with dimensions a, b, and d in the x, y, and z directions
of the reference frame, as depicted in Figure 2.11. The cavity modes begin with
the TE or TM waveguide modes, as they already satisfy the necessary boundary
conditions on the side walls (x = 0, a and y = 0, b) of the cavity.

The transverse electric fields (Ex, Ey) of the TEm,n or TMm,n rectangular
waveguide modes can be expressed as [14]:

Ẽ(x, y, z) = Ẽ(x, y)
(
A+e−jβmnz + A−ejβmnz

)
,

where Ẽ(x, y) is the transverse variation of the mode, and A+ and A− are
the amplitudes of the forward and backward traveling waves. The propagation
constant of the m,nth TE or TM mode is given by:

βmn =

√
k2 −

(mπ
a

)2
−
(nπ
b

)2
,

where k = ω
√
µ0ϵ0, and µ0 and ϵ0 are the vacuum permeability and permittiv-

ity.
Applying the condition for reflection from a conducting wall, Ẽ = 0 at z = 0

implies A+ = −A−. Then, the condition Ẽ = 0 at z = d leads to the equation:
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Ẽ(x, y, d) = −Ẽ(x, y)A+2j sin(βmnd) = 0.

The only nontrivial (A+ ̸= 0) solution occurs when:

βmnd = π for π = 1, 2, 3, . . . ,

implying that the cavity must be an integer multiple of a half-guide wavelength
long at the resonant frequency. No nontrivial solutions are possible for other
lengths or frequencies apart from the resonant frequencies.

The resonance wave number for the rectangular cavity can be defined as:

kmnl =

√(mπ
a

)2
+
(nπ
b

)2
+

(
lπ

d

)2

.

We then refer to the TEmnl or TMmnl resonant mode of the cavity. Each mode
is described by a set of integers, that are described in n⃗ = (n,m, l). It indicates
the number of variations in the standing wave pattern in the the vector direction
r⃗ = (x, y, z). The resonant frequency of the TEmnl or TMmnl mode is given by2:

νmnl =
ωmnl

2π
=

ckmnl

2π
√
µ0ϵ0

=
c

2π
√
µ0ϵ0

√(mπ
a

)2
+
(nπ
b

)2
+

(
lπ

d

)2

.

If b < a < d, the dominant resonant mode, corresponding to the lowest resonant
frequency, is the TE101 mode. In this mode, the electric field profile has one anti-
node in x and z directions, and the electric field oscillations are maximum at the
center of the cavity. In figure 2.12, the first two cavity modes for a 3D cavity are
shown.

As in the 1D case, the electric field of a cavity is quantized as

Ê(x, y, z) = E0(b̂+ b̂†) (2.57)

with the term E0 that defines the amplitudes of the fields:

E0 =

√
h̄ωr

2ε0Vmode

(2.58)

The mode volume Vmode of a 3D cavity refers to the spatial region where an electro-
magnetic mode is confined, in which most of the energy associated is concentrated.
It depends on the electric field E(r⃗) inside the cavity:

Vmode =

∫
V
ε0(r⃗)|E(r⃗)|2dr⃗
max(|E(r⃗)|2)

(2.59)

2The cavity is in vacuum, a material inside the cavity changes the frequencies of a factor depending
on the relative magnetic permeability and the relative permittivity of the medium.
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Figure 2.12: The first two modes of a 3D rectangular cavity, the TE101 (left) and TE201

(right)

2.3.3 Quality factor

The quality factor Q0 is a parameter that quantifies the electromagnetic losses, it
is defined as the ratio of the energy stored in the cavity and the power dissipated
by it. Higher Q0 implies lower energy dissipation, which means the resonator can
store energy for longer periods. In a resonant cavity, we define the quality factor
on a mode as

Q0 =
νc
∆ν

=
ωc

∆ω
(2.60)

where νc is the resonant frequency, ∆ν is the resonance width or full width at half
maximum (FWHM) i.e. the bandwidth BW over which the power of vibration
is greater than half the power at the resonant frequency. The resonator pulse
frequency is ωc = 2πνc and ∆ω is the half-power bandwidth.

From an experimental point of view, we have also the dissipation due to external
source of noise, therefore we have to distinguish to different quality factor:

• Unloaded quality factor Q0: this refers to the quality factor of the resonator
when it is isolated from external influences, so represents the intrinsic losses
of the resonator itself.

• Loaded quality factor Qload: it takes into account the effects of external com-
ponents or coupling with the resonator. This includes any losses introduced
by the connecting elements or materials surrounding the resonator.

Since powers are additive quantities, so are the inverse of the quality factors,
and the loaded Q can be expressed as:

1

Qload

=
1

Q0

+
1

Qext

(2.61)

with Qext is the external quality factor, which accounts for losses due to factors
external to the resonator itself. From the measurements we obtain the loaded Q,
this is adjusted modifying the coupling of the cavity to the external devices.
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2.4 Coupling of a transom qubit and a cavity in dispersive
regime

In this section we describe the principal behaviors of a transmon interacting with a
3D cavity resonator. A representation of the cavity-qubit system is made in figure
2.13.

Figure 2.13: (Right) An ANSYS simulation of the system analyzed in this work. We see
the qubit in the center of the cavity and the electric field of the first mode of the cavity
TE101. (left) a zoom of the qubit inside the cavity.

We consider only the first two qubit levels |0⟩ and |1⟩, corresponding to large

anharmonicity α. The hamiltonian of the qubit is Ĥq = − h̄ωq

2
σz, with ωq the qubit

frequency. We consider the cavity in the lowest mode (TE101), as the dimension
of the cavity ensure that the frequencies of the higher modes are significantly
separated from the lowest frequency. The qubit is placed at the center of the
cavity, where the field is maximum. The dimension of the qubit is much smaller
than the dimension of the cavity therefore, with a good approximation, the qubit
only interacts with the electromagnetic field at the center: r⃗ = (Lx

2
, Ly

2
, Lz

2
). For the

TE101, we have n⃗ = (1, 0, 1), the electric field of the cavity describe in equation

2.57 is Ê = E0(b̂ + b̂†). The Hamiltonian for the single mode of the cavity is

Ĥ = h̄ωc(b̂
†b̂+ 1

2
), with ωc the pulse frequency of the cavity. The operators b̂ and

b̂† destroy and create a photon inside the cavity.
The qubit interacts via its electric dipole d̂ (Figure 2.14), the interaction Hamil-

tonian is:
Ĥint = d̂ · Ê (2.62)

defining d as the magnitude of the qubit dipole aligned with electric field of the
cavity. The effective dipole operator is represented as d̂ = dσx = d(σ++σ−). where
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Figure 2.14: Scheme of the qubit interacting with the electric field via its electric dipole
d. The purple color describes the electromagnetic field, the qubit state is colored in
green. The interaction between cavity and qubit is indicated by the coupling constant
g. Image from [13]

σx define a generic position on the block sphere. The operators σ+ and σ− acts as
lowering and rising operator of the qubit state: σ̂+ |1⟩ = |0⟩ and σ̂− |0⟩ = |1⟩.

The interaction Hamiltonian is therefore

Hint = h̄g01(b̂+ b̂†)(σ+ + σ−) (2.63)

in which g01 quantify the interaction strength of qubit-cavity coupling energy. The
indices 0 and 1 refers to the coupling with the two computational level of the qubit,
but in general we can define the coupling strength gij between any two consecutive
energy levels i and j of the qubit. Multiplying we have four terms

Ĥint = h̄g01
(
σ̂+b̂

†︸︷︷︸
1.

+ σ̂−b̂︸︷︷︸
2.

+ σ̂+b̂︸︷︷︸
3.

+ σ̂−b̂
†︸︷︷︸

4.

)
(2.64)

these terms define the energy exchange between the qubit and the cavity, in par-
ticular

1. The qubit emits a photon and consequently the energy state becomes excited.

2. The qubit absorbs a photon and consequently the energy state becomes ex-
cited.

3. Absorption of a photon and de-excitation of the qubit: energy 2ωq is supplied.

4. Emission of a photon and excitation of the qubit: energy −2ωq is removed.

The last two terms are suppressed in perturbation theory because they have a small
probability of occurring. Hence, unless ωc and ωq are too far apart, we neglect the
last two processes.3

3This can be see in a formal way using a rotating wave approximation (RWA), with the rotating

operator Û(t) = eiĤqt
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The total Hamiltonian that describes a transmon qubit coupled with a cavity
resonator is the Jaynes-Cumming Hamiltonian, this includes the qubit and
cavity Hamiltonian and the interaction term:

H = h̄ωc

(
b̂†b̂+

1

2

)
+
h̄ωq

2
σz + h̄g01

(
b̂†σ− + b̂σ+

)
(2.65)

This Hamiltonian is diagonalized as a block diagonal matrix. The total Hilbert
space is infinite-dimensional as it is the result of the product Hq ⊗ Hr, where
dimHc = ∞ (infinite oscillators). The interaction terms transforms these states
into each other|1, n⟩ ↔ |0, n+ 1⟩ as

â†σ̂+ |1, n⟩ =
√
n+ 1 |0, n+ 1⟩ ,

âσ̂− |0, n+ 1⟩ =
√
n+ 1 |1, n⟩ ,

Considering that Ĥ0 is diagonal, while ĤI is off-diagonal, the Hamiltonian in
matrix form becomes (h̄ = 1 for simplicity)

Ĥ =
1

2
ωcI+



−1
2
ωq (

ωc − 1
2
ωq g01

g01
1
2
ωq

)
. . . (

(n+ 1)ωc − 1
2
ωq g01

√
n+ 1

g01
√
n+ 1 nωc +

1
2
ωq

)



|0, 0⟩
|0, 1⟩
|1, 0⟩

|0, n+ 1⟩
|1, n⟩

where the initial term represents the zero-point energy and I is the 2x2 identity
matrix. The detuning is defined as ∆ = ωq − ωc, we rewrite the generic block of
the previous matrix as(

(n+ 1)ωc − 1
2
∆ g01

√
n+ 1

g01
√
n+ 1 (n+ 1)ωc +

1
2
∆

)
For a single block, the spectrum of the Hamiltonian is given by the following
eigenvalues and eigenvectors:

E+ = (n+ 1)ωc +
1

2

√
∆2 + 4(n+ 1) , |n+⟩ = sin θn |0, n+ 1⟩+ cos θn |1, n⟩ ,

E− = (n+ 1)ωc −
1

2

√
∆2 + 4(n+ 1) , |n−⟩ = cos θn |0, n+ 1⟩ − sin θn |1, n⟩ ;

with the addition of the single state |0, 0⟩ with energy E0 = −∆
2
. The states |n−⟩

and |n+⟩ are called dressed states, and the angle θn is defined as

tan 2θn =
2
√
n+ 1

∆
.
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quantifies the hybridization of the |n+⟩ and |n−⟩ states.
The temporal evolution of the system realizes oscillation on the pair of dressed

states: each state behaves like a two-level system that coherently oscillates in cycles
of photon absorption and emission. This oscillations are called Rabi oscillations.

Figure 2.15: Difference in energy of dressed states with the ground state as a function
of detuning (∆ = ∆d). Note that the minimum energy difference between E+ and E− is
found at ∆ = 0, while the greatest difference is given when ∆ diverges. The horizontal
asymptote is found in correspondence of limits: lim∆→−∞(E+ −E0) = lim∆→+∞(E− −
E0) = (n+ 1)ωc. In this case, the following values were set: ωc = 25, g = 10, n = 1.

For ∆ = 0 (ωc = ωq) we have the resonance regime where θn = π
4
, so

cos θn = sin θn = 1√
2
. There is maximum hybridization of the states since

|n±⟩ =
|0, n+ 1⟩ ± |1, n⟩√

2
;

The energy difference is the smallest possible and depends on n:

E± = (n+ 1)ωc ± g01
√
n+ 1 .

The opposite case is the interesting one: the dispersive regime. It is reached
for ∆ ≫ g and θn ≪ 1 and corresponds to the minimum hybridization. The
original states remain almost unchanged except for small corrections.

|n−⟩ = |0, n+ 1⟩+ . . . ,

|n+⟩ = |1, n⟩+ . . . ;

we notice that this behavior is expected since ∆
g
→ ∞ equivalently means that

∆ = const and g ≃ 0: we are close to the free case where the qubit and the
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electromagnetic radiation are almost decoupled. Keeping small corrections in the

states |n+⟩ and |n−⟩, we expand the square root in g2

∆2 , we have

E± = (n+ 1)ωc ±
1

2

√
∆2 + 4g201(n+ 1)

= (n+ 1)ωc ±
∆

2

√
1 +

4g201
∆2

(n+ 1)

= (n+ 1)ωc ±
∆

2

(
1 +

2g201
∆2

(n+ 1) + . . .

)
= (n+ 1)ωc ±

(
∆

2
+
g201
∆

(n+ 1) + . . .

)
;

In this way, we built an effective Hamiltonian that describes the system.

Ĥeff = ωc

(
b̂†b̂+

1

2

)
− ωq

2
σ̂z −

g201
∆

(
b̂†b̂+

1

2

)
σ̂z +

g201
2∆

I (2.66)

indeed solving this Hamiltonian for the dressed states, we find the energy we expect
in the dispersive regime:

Ĥeff |0, n+ 1⟩ = ωc

(
n+ 1 +

1

2

)
− ωq

2
− g201

∆
(n+ 1) |0, n+ 1⟩

⇒ ωc(n+ 1)− ∆

2
− g201

∆
(n+ 1) ≡ E− ,

Ĥeff |0, n⟩ = ωc

(
n+

1

2

)
+
ωq

2
+
g201
∆

(
n+

1

2

)
+
g201
2∆

|1, n⟩

⇒ ωc(n+ 1) +
∆

2
+
g201
∆

(n+ 1) ≡ E+ .

This Hamiltonian is created considering only |0⟩ and |1⟩ qubit state, ignoring
the higher non-computational energy levels. This is a good approximation to
understand the cavity-qubit behavior, but generally there is an influence of the
other levels and it is useful consider its. A more general solution is obtained from
second-order perturbation theory, where we also consider the third energy level.
The Hamiltonian of a disperesively coupled system is [15]:

Ĥ = h̄(ω′
c − χσz)b

†b+
h̄

2
ω′
01σ

z (2.67)

where ω′
c and ω

′
01 are the frequencies of the cavity and the qubit renormalized by

the interaction terms (in this notation ωq = ω01).

ω′
c = ωc −

χ12

2
ω′
01 = ω01 + χ01 (2.68)
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The term χ is the total dispersive shift and is defined as

χ = χ01 −
χ12

2
(2.69)

with coupling χij given by

χij =
g2ij
∆ij

(2.70)

with ∆ij = ωij − ωc. The terms gij and ωij = ωi − ωj are the coupling and the
pulse frequency difference between two consecutive qubit levels i and j.

The dispersive regime is necessary for working on a qubit because it is needed to
decouple the qubit from external systems and keep the relaxation time unchanged.
We can also implement a quantum non-demolition measurement. It consist of a
measure of the state of a qubit without modifying it: we can determine the qubit’s
state by measuring the cavity’s frequency. This is seen in the Hamiltonian since
the cavity energy depends on a frequency that is shifted by a constant χ depending
on the qubit’s state.

Similarly, ωq is redefined following the interaction with the electromagnetic
field. Also the number of photons inside the cavity influence the qubit frequency.
This is due to the term proportional to the σz and b̂†b̂, modifying the number of
photon b̂†b̂ we modify the qubit state σz.

2.4.1 Capacity matrix

In a transmon qubit we define the total capacitance of the system from the Maxwell
capacity matrix. A schematic of the capacitance network of the device is shown in
Figure 2.16. The Maxwell capacity matrix is defined considering the capacitances
between the different component of the qubit. It is defined as

CM =

(
C11 C12

C21 C22

)
(2.71)

in which the components are given by:

C12 = C21 = Cpads, C11 = Cup + Cpads, C22 = Cdown + Cpads. (2.72)

where Cup and Cdown are the capacitances between the single pads and an infinite
ground plane while Cpads is the capacity between the two pads.

The system total capacity is derived from the Maxwell capacity matrix as
follow. The relation between the charge and the potential is Q = CMV:(

Q1

Q2

)
=

(
C11 C12

C21 C22

)(
V1
V2

)
, (2.73)
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x

z

𝜌𝑢𝑝

𝜌𝑑𝑜𝑤𝑛

𝐶𝑢𝑝
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𝐶𝑝𝑎𝑑𝑠

Figure 2.16: Scheme of the capacitances and the charge density distribution of the
transmon qubit. The two rectangles represent the upper pad (1) and the bottom pad
(2) of the qubit. The charge of the pads is Q1 = −Q2 = Q for the symmetry of
the system, with a charge distribution ρ(r⃗) = ρup(r⃗) + ρdown(r⃗). The green rectangle
represents an infinite ground plane. The capacitances between the pads and this plane
are Cup and Cdown, while the capacitance between the two pads is Cpads.

where Q1 and Q2 are the charges of the pad up and pad down respectively and
V1 and V2 are the corresponding charge potentials. Defining the inverse matrix
E = (CM)−1, the relation become:(

V1
V2

)
=

(
E11 E12

E21 E22

)(
Q1

Q2

)
(2.74)

with the corresponding equation:{
V1 = E11Q1 + E12Q2

V2 = E21Q1 + E22Q2

. (2.75)

The voltage difference between the pads is:

∆V = V1 − V2 = (E11 − E12 + E22 − E21)Q (2.76)

considering Q = Q1 = −Q2 due to the symmetry of the system. The current

flowing between the pads is given by I = −dQ
dt
, therefore dI

dt
= −d2Q

dt2
. Considering

a linear inductance L between the pads, the voltage is:

∆V = L
d2Q

dt2
(2.77)
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Combining 2.76 and 2.77, results in

d2Q

dt2
=
E11 − E12 + E22 − E21

L
Q (2.78)

As the transmon in the first approximation is an LC harmonic oscillator, we com-
pare it with 2.78 and see that

C = (E11 − E12 + E22 − E21)
−1 (2.79)

The formula 2.79 is written depending on the components of the Maxwell capacity
matrix CM, obtaining the relation for the effective total capacity for the transmon:

C =
C11C22 − C12C21

C11 + C12 + C21 + C22

(2.80)

2.4.2 Coupling strength

For a transmon qubit we define a formula to calculate the coupling constant g01 [15,

16]. For the TE110 mode of the cavity4, the electric field E⃗ is oriented parallel to the

z-axis of figure 2.16. The corresponding electric potential is given by V0(r⃗) = Ê ·z.
The interaction Hamiltonian is given by the interaction between the electric field
and the charges. Considering the charge of the pads Q1 = −Q2 = Q for the
symmetry of the system, with a charge distribution ρ(r⃗) = ρup(r⃗) + ρdown(r⃗), we
write the Hamiltonian as

Hint =

∫
ρ(r⃗)V0(r⃗)dr⃗ = −Ê ·Q · deff (2.81)

where we define the effective distance as

deff =

∫
Aup

(
ρup(r⃗)

|Q|

)
· z dr⃗ +

∫
Adown

(
ρdown(r⃗)

|Q|

)
· z dr⃗ (2.82)

with Aup and Adown are the areas of the upper and lower pads. The effective
distance is the geometrical distance between the center of the two pads taking into
account the charges distribution.

Considering the quantize electric field, the Hamiltonian 2.81 is:

H = 2en̂ · deff · E0(b̂
† + b̂) (2.83)

This Hamiltonian is compared to the interaction part of the Jaynes-Cumming
Hamiltonian

Hint = h̄g01

(
b̂†σ− + b̂σ+

)
(2.84)

4Notice that in literature the first mode is TE101, in this case is TE110 only because we invert the y
and z axis, both in Figure 2.16 and in the next chapter
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in both case we want to compute ⟨1|H |0⟩, with |1⟩ and |0⟩ the two states of the
qubit. We consider the operators σ− = |0⟩ ⟨1| and σ+ = |1⟩ ⟨0| and n̂ = a†a with
the relations a|n⟩ =

√
n|n−1⟩ and a†|n⟩ =

√
n+ 1|n+1⟩. Equalizing the solutions

of the two Hamiltonians we obtain the value of the coupling constant:

g01 =
2e · deff · E0

h̄

1√
2

(
Ej

8Ec

) 1
4

. (2.85)

with E0, EJ and EC are defined respectively in equations 2.58, 2.7 and 2.20.

2.5 Qubit driving

In this section, we discuss the dynamics of a qubit driven continuously with a
coherent control signal. Since the signal can be seen as a classical oscillating
electric field, we use a semi-classical approach considering only the qubit dynamics,
ignoring the cavity. This is a good approximation because we assume that the qubit
drive is off-resonant with the cavity transition.

2.5.1 Dynamics of a driven qubit

When the qubit is in contact with the electromagnetic field given by the signal, it
begins to oscillate at the same frequency. In terms of the Bloch sphere it involves
moving this system along the surface of the sphere.

We consider again the two-level Hamiltonian of the qubit Ĥq = − h̄ωq

2
σz and

the interaction given by the electric dipole moment as defined in equation 2.62:
Ĥint = −E⃗(t) · d̂. The electric field of a classical oscillating signal is E⃗(t) =
Eamp cos(ωdt+ ϕ), with Eamp the amplitude of the signal. The total Hamiltonian
is

Ĥ = Ĥq − E⃗(t) · d̂ = − h̄ωq

2
σz − Ωcos(ωdt+ ϕ)σx (2.86)

where ωd is driving frequency of the qubit and Ω = Eamp · d is a 2x2 matrix that
quantifies the strength of the interaction. To solve the Hamiltonian, we use again
a rotating wave approximation: we move from the lab frame to a rotating frame
and cancel the time-dependent terms.

The rotation is given by the operator U = e−i
h̄ωd
2

t, the Hamiltonian in the
rotating frame Ĥrf is evaluated with the following formula:

Ĥrf = UHU † − iUU̇ † (2.87)

with U̇ the time derivative of the operator. Removing the oscillating terms for the
RWA, we find a time independent Hamiltonian given by:

Ĥrf = − h̄∆d

2
σz −

(
Ω

2
eiϕσ+ +

Ω

2
e−iϕσ−

)
(2.88)
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where ∆d = ωq −ωd is the detuning between the drive frequency of the signal and
the qubit frequency. ∆d = 0 corresponds to the resonance.

The aim is to connect the time evolution of a state to the rotation of the state of
the qubit on the block sphere. Even though the Hamiltonian is time independent,
the time evolution of a state in the rotating frame is given by∣∣∣ψ̃(t)〉 = e−iĤevt

∣∣∣ψ̃(0)〉 . (2.89)

with
∣∣∣ψ̃(t)〉 the state in the rotating frame and U(t) = e−iHt the time evolution

operator. The Hamiltonian 2.88 can be written as:

H̃rf = −1

2
(h̄∆dσz + Ωcosϕσx − Ω sinϕσy) ≡ −Ω̃

2
a⃗ · σ⃗ ,

where

a⃗ =
1

Ω̃
(Ω cosϕ,−Ω sinϕ, h̄∆d) with Ω̃ =

√
Ω2 +∆2

d (2.90)

where Ω̃ =
√
Ω2 +∆2 is called the Rabi frequency and control the qubit oscil-

lation. Therefore the time evolution operator is rewrite as:

U(t) = e−iĤt = ei
Ω̃
2
(a⃗·σ⃗)t = I cos

(
Ω̃t

2

)
− i sin

(
Ω̃t

2

)
(σ⃗ · a⃗) ; (2.91)

this operator corresponds to a rotation of the qubit along the Bloch sphere: the
temporal evolution Rn⃗(−Ωt) performs a rotation of angle −Ωt around the direc-
tion identified by the vector a⃗. The parameters that describe the details of the
interaction with the external oscillating radiation are ∆d, Ω̃, and ϕ.

Now we calculate the probability that at time t, the qubit undergoes a transition
|0⟩ → |1⟩. Supposing the system in the initial state |ψ(0)⟩ = |0⟩, the probability
is:

P (t)0→1 =
∣∣∣⟨1| e−iĤt |0⟩

∣∣∣2 = ∣∣∣∣∣ ⟨1|cos
(
Ω̃

2
t

)
+ i sin

(
Ω̃

2
t

)
σ⃗ · a⃗|0⟩

∣∣∣∣∣
2

the first term is zero, while the second, σx |0⟩ = |1⟩ and σy |0⟩ = i |1⟩, receives
contributions only from σx and σy. Thus, we write

P (t)0→1 =

∣∣∣∣∣i sin
(
Ω̃

2
t

)
Ω

Ω̃
e−iϕ

∣∣∣∣∣
2

=
Ω2

Ω̃2
sin2

(
Ω

2
t

)
,
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where in the second line we used the components of a⃗ in equation 2.90. Inserting
the expression for Ω̃, we obtain the Rabi formula:

P (t)0→1 =
Ω2

Ω2 +∆2
d

sin2

(√
Ω2 +∆2

d

2
t

)
. (2.92)

This equation define the probability at time t that applying an external oscillat-
ing perturbation with frequency ωd, amplitude Ω and detuning ∆d results in a
transition |0⟩ → |1⟩. The qubit driven by an external signal at pulse ωd makes
continuous oscillations called Rabi oscillation. As we see in Figure 2.17, the
qubit oscillate at the Rabi frequency Ω̃. The amplitude is defined by Ω and the
detuning ∆d.

Figure 2.17: Rabi oscillations for Ω = 1. It is evident how the probability of the system
oscillates over time. The closer the system is to resonance (∆g = 0), the closer the peaks
will be to 1, and therefore the greater the probability of finding the system in |1⟩.

In general we discuss the dynamics of the qubit on the block sphere. We write
the state in the initial frame |ψ(t)⟩ with the relation:

|ψ(t)⟩ = e
i
2
h̄ωdσ3tRn⃗(−Ωt)|ψ̃(0)⟩

when there is no oscillating field (ωd = 0), the vector a⃗ = (0, 0,∆d/Ω̃), this means
that the state continues to have a precession z with the qubit’s natural frequency
on the lab frame. This is removed going to the rotating frame.

In resonance condition (∆ = 0), we have a⃗ = (cosϕ,− sinϕ, 0). In the rotating
frame, the qubit rotates with frequency Ω̃ in the plane perpendicular to a⃗, contin-
uously oscillating between |0⟩ and |1⟩. In the lab frame, the qubit precedes along
the sphere, as we see in Figure 2.18(a). However, for ∆ ̸= 0, the vector a⃗ has three
non-zero components. Consequently, starting from |0⟩, the qubit in the rotating
frame forms a circle that never reaches state |1⟩. Also in the lab frame the qubit
precedes never going to state |1⟩ (Figure 2.18(b)).
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Figure 2.18: Driven qubit state evolution in the Bloch sphere. The red (blue) line shows
the evolution of a driven qubit in the lab frame (rotating frame of the drive) for an
on-resonant drive (a) and for a detuned drive (b). Figure from [13].

From an experimental point of view, the temporal evolution is used to control
the individual qubit and move it on the Bloch sphere. This technique is really
useful for time-domain characterization experiments made in Chapter 4. We can
drive the qubit for a precise time, generating a pulse that brings the qubit to some
precise state positions. Two pulse that we send to a qubit are the π-pulse and
the π

2
-pulse. The π-pulse brings the state from |0⟩ to |1⟩, from the top to the

bottom of the sphere. The π
2
-pulse brings the state from |0⟩ into the superposition

|ψ⟩ = |0⟩+|1⟩
2

where |0⟩ and |1⟩ contribute equally (Figure 2.19). This corresponds
going from the top to the center of the the block sphere.

Figure 2.19: Scheme of a π
2 -pulse, the π-pulse takes the state from |0⟩ to |1⟩.

2.5.2 Dynamics in presence of dissipation

In the last section we assumed that the qubit is an ideal closed system that under-
goes unitary evolution given by the Schrodinger equation. In a real case the qubit
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is an open systems, that interacts with the environment, generating dissipative
process. For quantum systems, this interaction results in energy dissipation and
decoherence. In order to account for non-unitary and dissipative processes in qubit
dynamics, we consider the Heisenberg picture where the evolution of the system
is described by the evolution of a density matrix.

We study the total system of the qubit Hq interacting with the environment

HE, the total Hamiltonian is given by H̃ = Hq ⊗ HE. We define ρ̃ as the total

density matrix of H̃. The term ρ̃ = ρ ⊗ ρE, where ρ is the density matrix of the
qubit and ρE describe the environment.

In general the evolution of density matrix ρ =

(
|α|2 αβ∗

α∗β |β|2
)

for a state |ψ⟩ that

evolves with a unitary operator U is described by:

ρ = |ψ⟩⟨ψ| → U |ψ⟩⟨ψ|U † = UρU †

We express the evolution of the total system with the density matrix

E(ρ) = TrE[U(ρ⊗ ρE)U
†] (2.93)

which provides an effective description of the qubit with dissipation due to envi-
ronment. The term TrE is the partial trace, it is needed to ignore the degrees of
freedom of the environment and focusing on the physics of the qubit.

Figure 2.20: Transverse and longitudinal noise represented on the Bloch sphere. (a)
Bloch sphere for a generic state. (b) Longitudinal relaxation results from energy ex-
change between the qubit and its environment. (c) Pure dephasing in the transverse
plane arises from longitudinal noise along the z axis that fluctuates the qubit frequency.
(d) Transverse relaxation that results in a loss of coherence due to a combination of
energy relaxation and pure dephasing.

The dissipation process that described by two relaxation rates, that correspond
to a longitudinal and transversal damping on the block sphere [11].

• Longitudinal relaxation rate Γ1: The longitudinal relaxation rate de-
scribes depolarization along the qubit quantization axis. Depolarization oc-
curs due to energy exchange with the environment, generally leading to both
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an up transition rate Γ−
1 (excitation from |0⟩ to |1⟩), and a down transition

rate Γ+
1 (relaxation from |1⟩ to |0⟩). Together, these form the longitudinal

relaxation rate Γ1:

Γ1 =
1

T1
= Γ+

1 + Γ−
1 . (2.94)

the term T1 is the longitudinal relaxation time, called also lifetime of the
qubit. We work with the qubit in cold environment, enough cold to neglect
excitation (Γ−

1 = 0).

• Transversal relaxation rate Γ2 It is given by

Γ2 =
1

T2
=

Γ1

2
+ Γφ (2.95)

with T2 the transversal relaxation time, called also decoherence time. The
formula depends on pure dephasing rate and on transverse noise already
described. The pure dephasing rate describes depolarization in the xy plane
of the Bloch sphere. The dephasing time is defined as Tφ = 1

Γφ
and does

not depend on energy exchange.

The complete dynamic of a qubit interacting with the environment is described
by the Bloch-Redfield density matrix:

ρ =

(
|α|2 αβ∗

α∗β |β|2
)

→ EBR(ρ) =

(
1 + (|α|2 − 1)e−Γ1t αβ∗ei∆ωte−Γ2t

α∗βe−i∆ωte−Γ2t |β|2e−Γ1t

)
(2.96)

with the longitudinal decay function exp(−Γ1t), which accounts for longitudinal
relaxation of the qubit and the transverse decay function exp(−Γ2t), which ac-
counts for transverse decay of the qubit. The term ei∆ωt depends on the driving
frequency and it is relevant only when the qubit frequency ωq differs from the
driving frequency ωd. This matrix is valid for t≫ (T1, T2), in the assumption that
the environmental temperature is low enough that thermal excitations of the qubit
from the ground to excited state rarely occur. In chapter 4, we will see how to
calculate the T1 and T2 from the qubit characterization.

2.5.3 Loss participation ratios

We see that the lifetime T1 is the spontaneous relaxation time of the qubit from
the excited state to the ground state in presence of energy exchange. For the
transmon qubit we have two main phenomena that contributes to the lifetime [17–
19]. The first are the losses of the electromagnetic field in the dielectric media
around the qubit, corresponding to an intrinsic lifetime Tint. The second are losses
via a coupling to the cavity corresponding to a lifetime Tpurcell. The value of the
lifetime is

T−1
1 = T−1

int + T−1
purcell (2.97)
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The losses over the cavity due to the Purcell effect are given by [15]:

Tpurcell =
∆2

g201κ
(2.98)

where ∆ = ωc−ωq is the difference in resonance frequency of the cavity and qubit
and κ = ωr/2Qcav is the decay rate of the resonator where Qcav is the quality
factor of the cavity.

The dielectric losses are described in terms of an intrinsic quality factor

Qint = ωqTint (2.99)

of the transmon with contributions from different spatial regions i, like the silicon
substrate and the layers of oxide on the surfaces [18]:

Q−1
int =

∑
i

Pi tan δi. (2.100)

where Pi are the participation ratios and tan δi are the material-specific loss tan-
gents. Due to a much larger loss tangent of the surface oxide layers compared to
the silicon substrate and aluminium [18], only the surface layers were considered in
our analysis. As they are only about 5 nm thick, the electric field is approximated
as constant over their thickness.

The participating ratios are therefore given by:

Pi =
ϵ0ϵi
2W

∫
Ai

dr⃗ τi|E(r⃗)|2 =
ϵ0ϵiτiCtot

q2

∫
Ai

dr⃗ |E(r⃗)|2 (2.101)

where ϵi are the dielectric constants, τi is the thickness of the layer and Ai the
layer surface. The participation ratio is normalized by the total capacitor energy

W = q2

2Ctot
, with q the charge of a single pad. The E(r⃗) is the electric field

on the surface Ai that is the sum of a parallel and a perpendicular component
E(r⃗)2 = E(r⃗)2∥ + E(r⃗)2⊥.

The surface layers considered are the metal-air (MA), metal-substrate (MS)
and substrate-air (SA), the following contributions are derived [17]:

PMS =
ϵ0ϵ

2
S

ϵMS

tMS
Ctot

q2

∫
MS

dr⃗ |E0⊥|2 (2.102)

PMA =
ϵ0
ϵMA

tMA
Ctot

q2

∫
MA

dr⃗ |E0⊥|2 (2.103)

PSA = ϵ0tSA
Ctot

q2
(ϵSA

∫
SA

dr⃗ |E0∥|2 + ϵ−1
SA

∫
SA

dr⃗ |E0⊥|2) (2.104)
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where E0 is the electric field in air and considering the dielectric constant of air as
ϵ = ϵ0. To calculate these contributions we used the boundary conditions of the
electric field for the perpendicular and parallel components at the interface:

E1∥ = E2∥ (2.105)

ϵ1E1⊥ = ϵ2E2⊥ (2.106)

with 1 and 2 the two materials that constitute the interface.

2.6 Scattering parameters

In order to characterize a network in radio-frequency we introduce the scattering
matrix formalism [14]. In our set-up we have a resonant RF cavity connected to a
Virtual Network analyzer (VNA). The VNA introduce an electromagnetic signals
inside the cavity that interacts with the cavity and the devices inside it. Using
the VNA, we measures the power delivered to and from the cavity. Two antennas
are coupled with the cavity, creating a two port network. The scattering matrix
relates the amplitudes of the incident waves with the ones of the reflected waves
from the ports.

We define the scattering matrix for a two port network. We consider a signal
given by the following plane waves for voltages and currents, considering z as the
direction of propagation:

V (z) = V +
0 e

−jβz + V −
0 e

jβz; (2.107)

I(z) = I+0 e
−jβz − I−0 e

jβz; (2.108)

where V +
0 and I+0 are complex amplitudes of the incident wave, and V −

0 and I−0 are
complex amplitudes of the reflected wave. β = 2π/λ is the propagation constant
(or wave number) and λ the wavelength.

The idea is that the voltage outgoing from a port is due to a fraction of the
incident wave into the same port and a fraction of the incident waves entering the
network from the other port. The scattering matrix S define the relation of the
voltage between the outgoing and the incident waves:(

V −
1

V −
2

)
=

(
S11 S12

S21 S22

)(
V +
1

V +
2

)
(2.109)

with V the voltage, 1 or 2 the number of the port and − or + the outgoing or the
incident wave. The elements of the matrix Sij are the scattering parameters of the
ports i and j. The values of the parameters are

Sij =
V −
i

V +
j
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Figure 2.21: A scheme of the scattering matrix and parameters, bi refers to the output
wave of the port i and ai to the input one.

A scheme of the scattering matrix and scattering parameters is shown in Figure
2.21. In particular, we have four scattering parameters:

• S11: The reflection coefficient, it represents the ratio of the reflected wave
voltage to the incident wave voltage when only one port of a two-port network
is excited.

• S22: Similar to S11, but it represents the reflection coefficient when the other
port of the two-port network is excited.

• S21: This is the forward transmission coefficient, representing the ratio of
the transmitted wave voltage to the incident wave voltage when one port is
excited and the other is terminated with its characteristic impedance.

• S12: Similar to S21, but it represents the transmission coefficient when the
other port is excited.

2.7 Devices Fabrication

In this section, we present the fabrication procedures of the devices studied in this
thesis. The first device includes several Josephson junctions fabricated at CNR-
IFN in Rome. These junctions are characterized with DC current measurements in
Chapter 4. The second device is the transmon qubit fabricated at the Technology
Innovation Institute (TII) in Abu Dhabi. The design of the qubit is used for
performing electromagnetic simulations via ANSYS software in Chapter 3, while
a complete characterization of the qubit is made in Chapter 4.

The final device is the transmon qubit fabricated at CNR-IFN. We develop the
design of this qubit in Chapter 3 with ANSYS simulations, and we perform a DC
current characterization in Chapter 4.
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2.7.1 Josephson junctions fabricated at CNR-IFN.

The processes involved in the fabrication of a Josephson junction are various and
depend on machinery and on specific construction parameters. In this section
explain the essential steps to fabricate at the CNR-IFN in Rome the JJ analyzed
in this work. The optical image of the analyzed chip, as described in chapter 4, is
shown in figure 2.22.

Figure 2.22: This is an optical image of the chip. There are various zooms of the image
up to the last figure which represents the JJ. A real image of the chip is presented in
Chapter 4.

On the right of figure 2.22 there is a zoom of a single JJ. The junction has
dimension of 2×2 µm2, it is structured as two aluminum superconductor layer with
an aluminum oxide as insulator in between. The key processes of the fabrication
of a single JJ are outlined in figure 2.23 and include electron-beam lithographic
etching (Step 1), development (Step 2), aluminum evaporation (Steps 3 and 5)
with oxidation in between (Step 4), and lift off (Step 6).

Figure 2.23: Fabrication steps of a Josephson junction.
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The initial stage involves preparing the silicon chip substrate. It is done spin-
ning two resist layers, which serve as the mask necessary for the later two-angle
shadow evaporation. This process entails placing the wafer on a hot plate, where
the two layers are spun one at a time. The mask is composed by two layers rep-
resented by the blue solids in figure 2.24, on the bottom the material is COP 33
10% AR-P 617.10 of 1031 nm thickness and on the top PMMA 6% AR-P 669.06
of 1720 nm thickness.

After that, the sequential processes depicted in Steps 1 to 6 of Figure 2.23 are
carried out.

1. Initially, the design of the structure intended is designed by a software and
the file loaded to the machine. Therefore, the electron beam lithography
(EBL) is improved, in which the electron beam etches the bilayer allowing
us to make the evaporation procedures.

2. The development is done in a mixture of two chemicals, isopropanol and
methyl isobutyl ketone (MIBK) in this case, necessary to produce the under-
cut for the evaporation processes.

3. The evaporation is done with an electron gun evaporator. The evaporation
and oxidation procedures specifically for our junctions are depicted in figure
2.24. The Al source is prepared and the evaporation chamber is pumped
down. Then, the source is evaporated at an angle of 155° creating an alu-
minum layer of dimension 600 Å.

4. The oxidation is performed immediately after the first evaporation, since the
evaporation chamber remains in vacuum. Oxygen is injected at a pressure of
1 mbar for 5 minutes and then evacuated. Note that these are the parameters
defining the thickness of the junction barrier and its capacity.

5. The chip is subsequently rotated to assume an angle of 90° and the second Al
layer is deposited with the same evaporation process as step 3, the thickness
of this second layer is 300 Å.

6. The lift off consist of removing the resist from the wafer, leaving only the
junction. This is done with warm acetone that dissolve the resist.

At the end of this procedures, the chip is rinsed into isopropanol and dried with a
nitrogen gun.
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Figure 2.24: The figure represents on the left the real image of a JJ before 1) and after
3) the lift-off. Figure 2) is a schematic representation of the junction with the bilayer
mask, defined by the blue boxes. The images on the right are the different steps of the
fabrication: a) the holder with the masks, b) the first evaporation at 155° that forms the
first aluminum layer, c) the oxidation, d) the evaporation at 90° for the second aluminum
layer and e) after the lift-off where the mask is removed.

2.7.2 Transmon qubit fabricated at TII in Abu-Dhabi

The fabrication of the transmon qubit was made at the Technology Innovation In-
stitute in Abu Dhabi. An optical image of the device is shown in figure 2.25(right).
The fabrication process involves several steps:

1. Wafer Cutting: The qubit is made from a specific type of silicon with high
resistivity (> 20kΩ.cm). The silicon wafer was cut into small square pieces,
each measuring 22 × 22 mm2. Half-cuts were made on the backside of each
piece, measuring 2 × 14 mm2.

2. Cleaning: The individual pieces were cleaned in a solution of Acetone and
IPA using sonication for 5 minutes to remove any contaminants.

3. Layer Application: Two layers of resist were applied onto the silicon pieces
using a spin coater. The bottom layer, 500 nm thick, was made of Kayaku
PMGI SF9, while the top layer, 200 nm thick, was made of Allresist GmbH
AR-P 6200.9 (CSAR).
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4. Pattern Writing: Specific patterns for the transmon qubit and shunting ca-
pacitors were written onto the resist layers using an electron beam lithography
system (Raith eLINE Plus).

5. Development: After exposure, the resist was developed using specific chemi-
cals, revealing the desired patterns on the silicon pieces.

6. Metal Deposition: Aluminum (Al) was deposited onto the patterned areas
using e-beam evaporation. A layer of 35 nm Al was first deposited, followed
by oxidation at 0.625 mbar pressure for 25 minutes, and then a second depo-
sition of 55 nm Al.

7. Liftoff: Excess Al was removed using a bath of N-Methylpyrrolidone at 70°C,
leaving behind only the aluminum patterns on the silicon pieces.

The fabricated qubits were tested for their room temperature resistance using
specialized equipment. As a final inspection, an optical image of the transmon
qubit within the resonator along with the fabricated device, was captured for
documentation and analysis.

Figure 2.25: Left: Al cavity hosting the transmon chip. Right: optical image of the
transmon shunt capacitance pads acquired with a 100x magnification. The JJ is not
observable since is roughly 200×200 nm2, but it is located between the pads, in proximity
of the two observable metal extensions.

.

The transmon qubit is placed in a resonant cavity for the full characterization.
The resonant cavity is made of Al alloy 6061 with a rectangular parallelepiped
shape of dimensions Lx × Ly × Lz = 26× 36× 8 mm3. An image of the cavity is
shown in figure 2.25(Left). The silicon chip with the qubits is hosted in the middle
of the x − y plane with pads parallel to the z axis to couple to the mode TE110.
Two holes allow the insertion of the antennas for control and readout of the qubit
state.
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2.7.3 Transmon qubit fabricated at CNR-IFN

For the fabrication of the transmon qubit at CNR-INF we implement the same
technique used for the JJ. An image of the qubit is shown in figure 2.26, on the
right there is the zoom of the JJ at the center, depicted by the blue rectangle.

The qubit has two pads of radius 500 µm and a distance between the junction
and the circumference of the pad of 243 µm, while the junction has dimension of
approximately 150 × 450 nm2 . The lower layer of the junction is of the left pad,
it is composed by 600 Å of aluminum, evaporated at angle 155°. The oxidation is
performed injecting the oxygen for 5 minutes at 1 mbar pressure. The upper layer
of the junction corresponds to the right pad and is formed by the evaporation of
600 Å of aluminum at angle 155°. Also here the resist of the mask is removed with
warm acetone.

Figure 2.26: This is an image of circular qubit with different zooms, from the first figure
with the entire qubit to the last with a zoom of the JJ, the blue rectangle in the last
figure define where is located the JJ.
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Chapter 3

Disegn qubit 3D

In this chapter, we conduct electromagnetic field simulations for various transmon
qubit designs coupled with a 3D resonant cavity using ANSYS simulation software.
We develop a method that provides a comprehensive description of the system,
extracting key parameters directly from the simulations. This method is used
in this section to improve the design of 3D transmon qubits, in particular the
lifetime T1 and in the next section to analyze the data from an experimental
characterization of a real qubit.

3.1 Simulation Design

The simulation design comprises the 3D resonator cavity and the qubit laid on a
silicon substrate. The qubit consists of the conductive pads and the Josephson
junction. In ANSYS software, the components are defined as follows (Figure 3.1):

• The pads are represented by two 2D structures1 with different shapes, with
the boundary condition set as ‘Perfect E’ (perfect metal). The dimensions
and shapes of the pads depend on the model considered.

• The substrate is in the center of the cavity, and the qubit is laid on it. The
material is silicon (with dielectric constant ϵr = 11.9), and the dimensions
are 13 × 2 × 0.35 mm3.

• The Josephson junction is set in the middle of the two pads in a 2D config-
uration. It is modeled as a Lumped LC, with the inductance (L) set around
5 to 10 nH and an intrinsic JJ capacitance (C) of 0.8 fF. We use a linear
approximation for the inductance of the JJ.

• The 3D cavity, where all the components are placed. The cavity material is
aluminum, and its dimensions are 36 × 26 × 8 mm3 with rounded edges.

1In general, we also consider 3D structures in our analysis, noting only small differences in the
parameter extraction. For this reason, all the following geometries present 2D dimensions.

55
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• On the upper part, two antennas are placed to couple the cavity with the
external signals. We can set the position of the antennas to define different
coupling powers. In the following simulations, there is no coupling with
external signals.

Figure 3.1: This is the simulation design of the resonant cavity with the Abu-Dhabi
qubit.

3.2 Qubit Simulation in Resonant Cavity

In this section, we implement the method to estimate the principal parameters
from electromagnetic simulations for the TII qubit fabricated at Abu Dhabi.

The geometry of the pads is a 2D rectangle with sides ap = 144 µm and bp = 556
µm, and the distance between a single pad and the center of the junction is d = 10
µm. The inductance of the junction is set to L = 10 nH. This value was determined
during the fabrication process and is defined by the thickness of the oxide layer
between the conductive pads of the junction. An experimental estimation of L is
given in the next chapter. Figure 3.2 shows a simulation of the EM fields in the
cavity and close to the qubit on the right. The qubit is coupled with the first mode
of the cavity TE110, as described in section 2.4.

In the following we discuss how to estimate the fundamental parameters of the
qubit, listed in Table 3.1. The parameters are the total capacitance of the qubit
C, the coupling constant g01, and the qubit lifetime T1. Some calculations are
done directly inside the ANSYS environment, using the ANSYS Calculator [20].
An example is shown in Figure 3.3.
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Figure 3.2: Simulation of the electromagnetic field in the TE110 mode with the Abu
Dhabi qubit.

Figure 3.3: Screenshot of the ANSYS Calculator tool with the implemented effective
distance formula.

Total Capacitance

In section 2.4.1, we explain how to derive the total capacitance of the qubit from
the Maxwell capacitance matrix, defined in Equation 2.71:

CM =

(
C11 C12

C21 C22

)
with the matrix components reported in Equation 2.72 and described in Figure
2.16. The total capacitance value is given by the Equation 2.80:

C =
C11C22 − C12C21

C11 + C12 + C21 + C22

The matrix is derived from ANSYS-Q3D software and the total capacitance is
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estimated by implementing the formula 2.80 within the ANSYS calculator. We
find the value of the capacitance Csim = 56 fF.

Coupling Constant

In section 2.4.2, we discussed how to relate the coupling g01 to the qubit geometrical
proprieties. This is given by Equation 2.85:

g01 =
2e · deff · E0

h̄

1√
2

(
EJ0

8EC

) 1
4

where deff represents the effective distance, E0 denotes the field amplitude of the
cavity mode, EJ stands for the Josephson energy, and EC refers to the charging
energy of the qubit.

The value E0, as defined in Equation 2.58, is dependent on the cavity mode
frequency νc and the mode volume Vmode. The cavity mode frequency νc = ωc/2π =
7.27 GHz is estimated from ANSYS-HFSS simulations. The mode volume refers to
the spatial region where the cavity mode is confined, in which most of the energy
associated is concentrated. It is given by Equation 2.59:

Vmode =

∫
V
ε0(r⃗)|E(r⃗)|2dr⃗
max(|E(r⃗)|2)

This formula is implemented on the ANSYS Calculator, integrating the electric
field calculated by ANSYS-HFSS software. The value estimated is Vmode = 1.6 ·
10−6 m3. The field amplitude E0 is calculated as:

E0 =

√
h̄ωc

2ε0Vmode

= 4.12 · 10−4 V/m.

The value of EJ0 depends on the critical current I0 =
Φ0

2πL
= 33 nA and is given

by Equation 2.7:

EJ0

h
=

Φ0I0
2πh

= 163 GHz.

Similarly, EC depends on the total capacitance, which was calculated earlier,
and is given by Equation 2.20:

EC

h
=

e2

2Ch
= 0.35 GHz.

The effective distance deff is the geometric distance between the center of the
two pads, weighted by the distribution of charges. It is given by equation 2.82:

deff =

∫
Aup

(
ρup(r⃗)

|q|

)
· z dr⃗ +

∫
Adown

(
ρdown(r⃗)

|q|

)
· z dr⃗



3.2. QUBIT SIMULATION IN RESONANT CAVITY 59

with q the charge of a single pad, ρ(r⃗) = ρup(r⃗) + ρdown(r⃗) the charge density and
Aup and Adown the areas of the upper and lower pads. The value is estimated
integrating the charges distribution calculated by ANSYS-HFSS software. This
operation is done directly inside the ANSYS Calculator, obtaining deff = 440 µm.

Considering these results, we find the value of the coupling gsim01 /2π = 97 MHz.

Lifetime of the Qubit

In section 2.5.3, we define the relaxation time of the qubit T1 from two contribu-
tions: the losses of the electromagnetic field in the dielectric media around the
qubit (Tint) and via coupling to the cavity (Tpurcell). The relaxation time is calcu-
lated by Equation 2.97:

T−1
1 = T−1

int + T−1
purcell

The Purcell time Tpurcell is given by Equation 2.98:

Tpurcell =
∆2

g201κ

with ∆ = ωc−ωq the difference between the cavity and qubit resonance frequency.
The qubit frequency is obtained inverting the Equation 2.34:

ωq

2π
=

√
8ECEJ0 − EC

2πh̄
= 6.38 GHz,

Considering the cavity frequency just calculated, we estimate ∆ = ωc − ωq = 5.6
GHz. The decay rate of the cavity is κ = ωc/2Qcav = 0.54 MHz, in which the
quality factor of the cavity Qcav = 42055 is given from the experimental analysis
in Chapter 4. From these results, we obtain the Purcell time Tpurcell= 156 µs.

The intrinsic lifetime Tint is defined in terms of an intrinsic quality factor,
as described in Equation 2.100: Qint = ωqT

int
1 . The value of Qint depends on the

participation ratios from different spatial regions. This is given by Equation 2.100:

Q−1
int =

∑
i

Pi tan δi.

with the participation ratios defined by the formulas reported below. Equation
2.102 for the surface between the pads and the silicon substrate (MS), Equation
2.103 for the pad surface in air (MA), and Equation 2.104 for the part of the
substrate in contact with air (SA):

PMS =
ϵ0ϵ

2
S

ϵMS

tMS
Ctot

q2

∫
MS

dr⃗ |E0⊥|2

PMA =
ϵ0
ϵMA

tMA
Ctot

q2

∫
MA

dr⃗ |E0⊥|2

PSA = ϵ0tSA
Ctot

q2
(ϵSA

∫
SA

dr⃗ |E0∥|2 + ϵ−1
SA

∫
SA

dr⃗ |E0⊥|2)
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with E0 is the electric field in air and q the charge of the pad. For MS and MA,
only the perpendicular contribution is considered, and for SA, only the parallel
one. A representation of the three spatial regions of the qubit is shown in Figure
3.4.

Figure 3.4: Representation of the spatial regions in the participation ratios calculation.
The metal surface represents qubit pad that for the TII qubit is made of Aluminum. The
regions considered are metal-air (MA), metal-substrate (MS), and substrate-air (SA).

We determinate the participation ratio values by integrating the electric field
calculated by HFSS-ANSYS software using the ANSYS Calculator. The constant
values set for the calculations are as follows. Aluminum oxide: εMS = εMA = 9.8,
Silicon dioxide: εSA = 3.8, Silicon substrate: εS = 11.8 Loss tangent: δi = δ =
0.002, Thickness: ti = 5 nm. The value of the εi are typical and taken from [18], the
loss tangent is taken from [17] and the value of the thickness is an approximation.

We estimate the total loss as Ptot = PMS + PSA + PMA = 2.18× 10−4, with the
major contribution from PMS, which is hundreds of times higher than the other two
contributions. Considering a constant δ, the value of the intrinsic quality factor
directly depends on Ptot:

Qint =

(∑
i

Pi tan δi

)−1

= (Ptot tan δ)
−1 = 2.29 · 106,

Thus the intrinsic lifetime is:

Tint =
Qint

ωq

= 57 µs.

From these results, we estimate the qubit lifetime as:

T1 =

(
1

Tint
+

1

Tpurcell

)−1

= 42 µs.
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Table 3.1: Simulated parameters for the Abu-Dhabi qubit coupled with the cavity.

Variables Values

I0 [nA] / L0 [nH] 33 / 10
ap [µm] 144
bp [µm] 556
d [µm] 10

Ptot 2.18 ·10−4

Tpurcell[µs] 156
Tint[µs] 57
T1[µs] 42
Ctot[fF ] 56
deff [µm] 440

g01/2π[MHz] 97

3.3 Loss qubit optimization and circular design

In this section, we apply the method developed in the last section to evaluate
various transmon designs. The aim is to improve the geometrical parameters
values in order to reduce the total losses on the qubit and increase its lifetime T1.

3.3.1 Pad Geometries

In our optimization process we consider different pads geometries. These are ob-
tained by modifying the size and shape of the two pads. Each pad geometry has
a component that connects the pad to the Josephson junction, which can be a
straight or inclined line. Four geometries of the qubit pads are taken into account
(see Figure 3.5), each described with different parameters:

• Rectangular Geometry: This geometry consists of two rectangular pads.
The principal parameters are ab and bp, the dimensions of the rectangle, and
d, the distance between the pad and the center of the JJ.

• Pear Geometry: The second geometry is defined by two pads of composed
by a circle linked by a trapezoid. The geometrical parameters are the radius
of the circle r0, the distance between the center of the JJ and the trapezoid
small base lpad, and the length of the small base abpad.

• Circular Tapered Geometry: In the third geometry, the pad is composed
of a circle joined to the JJ by a tapered structure. The geometrical parameters
are the radius of the circle rpad, the distance between the center of the JJ
and the nearest part of the circle d, and a variable that denotes the level of
tapering ltape.
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Figure 3.5: The considered pad geometries: rectangular pad (first), pear pad (second),
circular tapered pad (third), and circular pad (fourth).

• Circular Geometry: The fourth geometry is the same as the third one but
without tapering, i.e., with only rectangular structures connecting the pads
with the JJ. Therefore, the only two parameters are rpad and d.

3.3.2 Designs analysis

The starting point of our T1 optimization analysis is the geometry of the transmon
qubit produced in Abu Dhabi, with the parameters reported in Table 3.1. The
value of the total loss Ptot = 2.18 ·10−4 is taken as the reference P0. As we already
see, the lifetime of a qubit depends on Tint, due to the losses of the EM field around
the qubit, and Tpurcell, due to the losses via the coupling to the cavity, as described
by Equation 2.97:

T−1
1 = T−1

int + T−1
purcell

In particular we have:

• The value of Tpurcell =
∆2

g201κ
(Equation 2.98) depends on κ = ωc/2Qcav = 0.54

MHz, fixed by the cavity features as calculated in the last section, and on
the ratio |∆/g01|. The latter depends on the qubit frequency ωq (since ∆ =
ωc − ωq) and on the coupling strength of the qubit. The coupling strength is
given by Equation 2.85 and depends mostly on the effective distance variation
deff (since E0 is fixed by the cavity parameters and ( EJ0

8EC
)
1
4 is almost constant).

For the qubit produced in Abu Dhabi, the value of the ratio is |∆/g01| = 6.8.

• The value of Tint = Qint/ωq (Equation 2.99) depends on the qubit frequency
and on the intrinsic quality factor, given by the sum of the participation
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ratios Ptot for the different spatial regions (Equation 2.101): metal-air (MA),
metal-substrate (MS) and substrate-air (SA).

For the qubit produced in Abu Dhabi, the value of the Tpurcell = 156 µs, is
higher than the Tint = 57 µs, therefore Tint gives the higher contribution for the
qubit decoherence, that brings lower T1. In this section, we focus on improving
the value of the Tint, with keeping the ratio |∆/g01| almost constant, in order to
not invalidate the Tpurcell.

To achieve this, we modify the designs by conducting an iterative study of the
geometrical parameters of the qubit pads, using the ‘Optimetrics’ tool in ANSYS.
For every configuration, we estimate the capacitance C, the effective distance deff
and the total loss Ptot from ANSYS software in order to evaluate the losses and
calculate the ratio |∆/g01|, as described in the last section for the qubit of Abu
Dhabi.

The formula of the losses contribution, given by Equation 2.101:

Pi =
ϵ0ϵiτiC

q2

∫
Ai

dr⃗ |E(r⃗)|2

depends on the total capacitor energy W = q2

2C
, with q the charge of a single pad,

but also on the distribution of the electric field E0 on the different contribution
surfaces Ai. Higher electric fields distributed in small areas lead to an increase in
total electromagnetic losses.

Analyzing the distribution of the electromagnetic field of the design of the
Abu Dhabi qubit (Figure 3.6(left)), we notice that a significant portion of the field
concentrates on the corners of the rectangular pads, increasing the losses. To avoid
this, we perform two different operations:

1. A smoothing of the pad corners.

2. An addition of tapered lines, i.e., tilted lines that connect the pads to the
junction.

with the aim of achieving a better distribution of the field.
Before trying new pads geometries we make an evaluation of the variations in

losses by modifying the geometrical parameters of the rectangular design. The
ranges are ap = (50, 800) µm, bp = (200, 1400) µm, and d = (4, 20) µm. As
we expected the capacity increases with the pad dimensions and decreases with
increasing distance d. The effective distance is directly proportional to ap, bp, and
d. In general the losses values remains high, comparable to P0. The same thing
applies for the pear geometry: the capacitance increase with the pads areas and
decrease moving the pads further from the junction. The losses are still high due
to the fields that stands on the corners of the trapezoid base abpad.

The losses decrease significantly trying the new design with circle pads and
tapered lines, where a complete analysis is presented in Figure 3.7. This figure
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Figure 3.6: Comparison of electromagnetic field simulations on the surfaces of the two
qubits, the Abu-Dhabi (left) and circular (right). We observe a higher EM field distri-
bution on the corners. The scale to value of the EM field for the circular pads is an
order of magnitude smaller than the Abu Dhabi one.

shows the variation of the capacity, effective distance, and losses as functions of
the three geometrical parameters. In general, we tried various values in different
ranges. In Figure 3.7 the parameters variation ranges are rpad = [350, 650] µm,
ltape = [0, 200] µm, and d = [150, 350] µm.

From this analysis we made the following considerations:

1. The capacity is directly dependent on rpad, ltape, and inversely on d. Increas-
ing the pads areas the capacitance get higher and increasing the distance
between the pads becomes smaller.

2. The effective distance is directly dependent on ltape and d, and inversely on
rpad. As a consequence, the value of the coupling strength is lower increasing
the area, while is higher increasing the distance between the pads and the
level of inclination of the lines.

3. The losses are strongly dependent on the radius of the pads: higher radius
values correspond to larger areas and less losses. The distance between the
pads also influences the losses, although in a limited way; generally, there
are smaller losses for closer pads. The losses are only weakly influenced by
the tapering; we find that the geometry that minimizes the losses is without
tapering.

Considering the minimal influence of tapering on the losses, we conduct a finer
variation the parameters for the geometry with straight lines, since this geometry
has only two parameters and requires less computational time. In Figure 3.8
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Figure 3.7: Complete analysis of the circular tapered geometry, including variations in
the total capacity (upper), effective distance (middle), and losses (lower) as a function
of the geometrical parameters. The ranges of the geometrical parameters are rpad =
[350, 650] µm, ltape = [0, 200] µm, and d = [150, 350] µm. Note that for the effective
distance, the axes are reversed for image display purposes. The variations in results are
discussed in the text.

we show the results for the following variation ranges: rpad = [200, 700] µm and
d = [10, 500] µm. For the capacity and effective distance, we observe the same
dependence on the radius rpad and the distance d as in the circular tapered design.
The losses are strongly dependent on the radius and weakly on the distance from
the pads to the junction.

The previous analyses are performed by fixing the inductance value L = 10
nH, as specified by the qubit of Abu Dhabi. But in general, we have the flexibility
to set the fabrication parameters of the junction to have a precise inductance. A
variation in L corresponds to a change in the qubit frequency. In this analysis, we
vary L to observe its influence on the total loss Ptot. After, we select the value of L
while maintaining the factor |∆/g01| constant, even though the chosen value may
not be optimal. In Figure 3.9, we show the variation of the losses as a function of
the inductance. The latter modifies the value of the losses by almost 20%.
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Figure 3.8: Analysis of the circular qubit. The variation of the capacity (first), effective
distance (second) and the losses (third) as a function of the radius rpad and the distance
of the pad circumference from the center of the junction d.

3.3.3 Circular design

Taking into account all the results, we obtain the optimal design defined by circular
pads geometry with a radius of 500 µm and a distance between the center of the
circle and the junction of 243 µm, the inductance is set at L = 7.8 nH that
corresponds to a critical current of I0 = 42 nA. The design is selected to minimize
losses by maximizing the pad radius while keeping the ratio |∆/g01| constant, which
is influenced by the effective distance. The most important features of this qubit
are reported in Table 3.2, which are compared to the ones of the qubit produced
in Abu Dhabi in Table 3.1.

With this qubit design we reduce the total losses of Ptot = 0.31 · P0, with an
increase of the internal time of Tint = 244 µs. The value of the ratio is |∆/g01| = 9
(instead of |∆/g01| = 6.8), giving a estimation of Tpurcell = 84 µs lower than the

initial design (T
(Abu−Dhabi)
purcell = 156 µs). Considering both the contributions, the

lifetime obtained by the simulation is T1 = 63 µs, that is higher than the initial

one of T
(Abu−Dhabi)
1 = 42 µs. In Figure 3.6 we see the electric field distribution for

the circular design (right) compared to the design of the qubit produced in Abu



3.3. LOSS QUBIT OPTIMIZATION AND CIRCULAR DESIGN 67

Figure 3.9: Losses for different value of the inductance L.

Dhabi (left). As expected, by smoothing the corners, we achieve a more uniform
field distribution on the pads with a lower intensity, resulting in a reduction of
losses. This design presents also a bigger capacitance C = 93 fF and a higher
value of the coupling constant g01/2π = 355 MHz.

Table 3.2: Simulated parameters for the new circular qubit coupled with the cavity.

Variables Values

I0 [nA] / L0 [nH] 42 / 7.8
rpad [µm] 500
d [µm] 243

Ptot 6.51·10−5 (0.31P0)
Tpurcell[µs] 84
Tint[µs] 244
T1[µs] 63
Ctot[fF ] 93
deff [µm] 1337

g01/2π[MHz] 355

3.3.4 Mesh resolution

It is possible to improve the results with a major computational power that allows
a finer scan of the parameters and a better resolution of the Mesh. The Mesh
is a discretized representation of the geometry that breaks it into small elements
to facilitate accurate numerical simulation by solving equations at discrete points.
Setting the appropriate mesh is crucial for accurately simulating physical behavior,
which plays an important role in our analysis, particularly for calculating the losses
that influence the qubit lifetime T1 (section section 2.5.3).
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In these simulations, we used a mesh size on the order of 50 µm, as shown in
Figure 3.10. The variation of the effective distance and the loss as a function of
the mesh size for the qubit of Abu Dhabi is shown in Figure 3.11.

Figure 3.10: Circular qubit design with a mesh size set at 50 µm.

A mean of the effective distance values obtained from these simulations is
deff = 441 ± 16 µm, which is influenced only by 3% modifying the mesh size.
However, the total losses Ptot = (2.66± 0.95) · 10−4 changes significantly with the
mesh size (35%). This fluctuation affects the Tint value and consequently impacts
the qubit lifetime T1.

Comparing the simulation results with the experimental results presented in
the next chapter in Table 4.1, we notice that while the simulated values of capac-
itance and coupling constant align well to the experimental results, the value for
the simulated lifetime value of T sim

1 = 42 µs differs substantially from the exper-
imentally determined one of T exp

1 = 8.68 µs. The different values of the lifetime
might originate from an underestimation of the participation ratios due to limita-
tions in our numerical mesh resolution. The large range of scale from millimetres
for the pads and nanometres for the edge regions, makes it computationally chal-
lenging to resolve the electric field accurately, especially in the edge regions where
the fields diverge. This is also true for the losses estimation in the design opti-
mization, where we cannot completely rely on the simulation for the calculation
of the losses if we cannot get the meshing size further down. Previous reports on
this have been given in [18] and [21], where also potential solutions are proposed,
that are currently explored.
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Figure 3.11: This is a plot of the effective distance (red) and the losses (green) as a
functions of the mesh size dm simulated for the Abu Dhabi qubit. The Y1 is the value
of the two quantities for different mesh sizes. The total losses Ptot is given by the value
on the graph divided by the factor 0.56 that depends on the pad capacitance, since in
ANSYS the loss calculation is made considering C = 100 fF. There are mesh values from
2.6 µm to 0.5 µm, while for finer values the pc ran out of RAM memory.
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Chapter 4

Measurement

In this chapter, we present the characterization of the TII qubit fabricated in Abu-
Dhabi and of the qubit and Josephson junctions fabricated at CNR-IFN in Rome.
All measurements are performed at the National Laboratory of INFN in Frascati
(LNF).

4.1 Cryogenics

Qubits and Josephson junctions require a cryogenic environment to reach very low
temperatures, enabling the transition of aluminum into the superconducting state
and reducing noise and decoherence effects.

At LNF, we used a Leiden Cryogenics CF-CS110-1000 3He-4He dilution refrig-
erator, capable of achieving temperatures of approximately 10 mK and maintaining
that temperature for relatively extended periods.

4.1.1 Dilution refrigerator operation

Dilution refrigerators use the properties of helium isotopes, specifically 3He and
4He. These isotopes exhibit distinct behaviors: 4He acts as a Bose fluid and
undergoes a phase transition into a superfluid state below 2.17 Kelvin, whereas
3He behaves as a Fermi fluid with higher entropy.

When mixed together, 3He can flow through the superfluid 4He with little
impedance. At low temperatures, the isotopes naturally separate, with 3He floating
on top of 4He due to its lower density.

The separation process occurs spontaneously, with the 3He-rich phase becoming
purer as the temperature decreases, while the 4He-rich phase reaches a specific
concentration. This behavior is governed by the quantum nature of the fluids,
ensuring that 3He always dissolves in 4He with a minimum concentration, which
is crucial for the success of dilution refrigerators.

71
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A dilution refrigerator typically consists of three main parts: the mixing cham-
ber (MC), the still, and the heat exchangers. The mixing chamber is the coldest
stage and contains pure 3He on top of diluted 4He. The still heats up and removes
vapor 3He, creating a concentration gradient in the mixing chamber.

To maintain equilibrium, pure 3He moves downward into the diluted 4He, re-
sulting in a cooling effect. The vapor 3He removed from the still is condensed and
returned to the mixing chamber to complete the circulation cycle. The returned
3He gas can be condensed using either wet or dry methods, depending on the
presence of liquid 4He in the cryostat.

4.1.2 Cryostat

The image of the LNF cryostat is depicted in figure 4.1 where the plates composing
the device are shown. The cryostat is composed by five plates. Starting with the
50 K plate on the top of the cryostat, the temperature of the system gradually
decreases up to the 10 mK plate to the bottom of the cryostat.

The refrigeration process starts with a precooling operation using liquid Nitro-
gen that bring the temperature from 300 K to 77 K. The liquid Nitrogen flows
in the LN pipes, in thermal contact with each plate. Then, a pulse tube, which
operates compression and decompression cycles to the 4He gas, is switched on and
brings the temperature down to about 4 K. Finally, circulation of the 3He-4He
mixture is activated and the system is cooled down to about 10 mK in the mixing
chamber. The devices studied in this work are in thermal contact with the 10 mK
plate of the refrigerator.

4.2 Transmon qubit characterization

The transmon qubit characterization consists in the extraction of important pa-
rameters from experiment analysis. The transmon qubit considered in this work
is the one fabricated at the Technology Innovation Institute in Abu Dhabi. A
complete description of the fabrication is made in section 2.7.2.

The parameters are extracted by the Hamiltonian derived in section 2.4. It
describes the qubit-cavity system in a dispersive regime keeping into account the
third energy level. The Hamiltonian is:

Ĥ = h̄(ω′
c + χσz)b

†b+
h̄

2
ω′
01σ

z (4.1)

where ω′
c and ω

′
01 are the frequencies of the cavity and the qubit renormalized by

the interaction terms.

ω′
c = ωc −

χ12

2
and ω′

01 = ω01 + χ01 (4.2)
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Figure 4.1: Detail of the Leiden Cryogenics CF-CS110-1000 dilution refrigerator, showing
the plate temperatures of all the thermalization stages.

The term χ is the total dispersive shift and is defined as

χ = χ01 −
χ12

2
(4.3)

with χij given by

χij =
g2ij
∆ij

(4.4)

with ∆ij = ωij − ωc. The terms gij and ωij = ωi − ωj are the coupling and the
pulse frequency difference between two consecutive qubit levels i and j.

In this section we shown some principal techniques for qubit characterization.
The results of the analysis are listed in Table 4.1. The characterization procedure
is divided in transmon spectroscopy and time domain characterization.

4.2.1 Experimental setup

Full characterization of the qubit was done at the National Laboratory of INFN
in Frascati. The experimental setup is shown in Fig. 4.2.

The dashed lines indicate the different temperature stages of the cryostat of a
dilution refrigerator. The device is host in the 10 mK stage. Control and readout
signals entering Line 1 are attenuated by -20 dB at 4 K and by -30 dB at 10 mK.
Including the attenuation of the coaxial cable the total attenuation is -68 dB.



74 CHAPTER 4. MEASUREMENT

Both input and output ports are filtered with IR and Low-pass filters with 10
GHz cut-off frequency, while an additional 4 GHz high-pass filter is mounted on
the input port. The output signal passing through Line 5 is amplified with a High
Electron Mobility Transistor by 36 dB at 4 K and with two Field effect transistor
by 35 db and 30 dB at 300 K. Two circulators are used to minimize the reflected
noise and decouple the amplification stages.

For time-domain measurements, the qubit control pulses are directly produced
by a RF source (ROHDE-SCHWARZ SMA100B). The readout pulse is obtained
by the vector modulation of a signal generated by a second RF source (ROHDE-
SCHWARZ SGS100A) at the cavity frequency and controlled by a square-wave
pulse of width 10 µs generated by a wave function generator (KEYSIGHT 33500B)
triggered by the SMA100B.

Both the control and readout pulses are transmitted to Line 1 through a
combiner. After amplification, the readout pulse is down-converted and I and
Q quadratures are acquired with a 16-bit ADC board at 1GS/s rate, and post-
processed to determine the qubit state.

For cavity and qubit spectroscopy, the generation and acquisition of the readout
pulse is replaced by the S21 measurement with Vector Network Analyzer (VNA).
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Figure 4.2: Scheme of the experimental setup used for the transmon characterization.
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4.2.2 Transmon spectroscopy characterization

The first type of characterization is a spectroscopy. It is implemented analyzing
the absorption spectra of the Vector Network Analyzer (VNA) and is divided in
cavity and qubit spectroscopy [22].

Cavity spectroscopy

The cavity spectroscopy consists of an analysis of the absorption spectra S21 for
different power of the probe. To explain the behavior of the system we rewrite the
Hamiltonian from the resonator point of view:

Hc = h̄(ωc −
χ12

2
+ χσz)b

†b+
h̄

2
(ω01 + χ01)σz (4.5)

In Figure 4.3(left) we show the resonator absorption as a function of the prob-
ing power. This is obtained taking the transmission spectra using the VNA, for
different values of the VNA power.

From Figure 4.3(right) we see the transmission for the higher (orange) and
the lower (blue) VNA power. In this characterization the qubit has no external

excitation, so it remains in the |0⟩ state with eigenvalue − h̄ωq

2
.

In Figure 4.3(left), the power of the VNA increases the number of photons
N = b†b inside the cavity. The rise of the power causes a shift of the frequency.
In particular, we observe two different features on the figure:

• At low power the qubit is coupled to the cavity, this coupling cause a shift
of the frequency of the system. Considering ωc the bear cavity frequency, we
have a shift from this frequency to the frequency of the dressed cavity-qubit
system ω

′
c. This shift is given by

ωc − ω
′

c = χ+
χ12

2
(4.6)

This is seen in equations 4.2 and in the Hamiltonian 4.5. In both equations
there is a term depending on σz. We notice a shift of the transmission peak
to lower frequencies increasing the power of the probe, due to a second order
effect.

• For too high power, the number of photons is so high as to induce the tran-
sition of the junction to the normal state. In this case we observe only one
resonance at the bare cavity frequency ωc.

This two features are distinct in Figure 4.3(right), the peaks in the spectra
correspond to the cavity system (orange) and the qubit-cavity (blue) system. From
the spectra at lower power we find the value of the dressed cavity frequency ν ′r =
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ω′
r/2π = 7.279 GHz. It is given by the center of the peak interpolated with a

Lorentzian function.
From high power we see the peak corresponding to the cavity resonance. Inter-

polating the spectrum with a Lorentzian function we calculate the bare frequency
of the cavity νc = ωc/2π = 7.269 GHz and the loaded quality factor of the cavity
Qcav = 42055. It is given by Qcav = ωc

∆w
with ∆ω the full width half maximum.

Then the shift of the cavity frequency is (χ+ χ12

2
)/2π = −10.2±0.1 MHz (equation

4.6).

Figure 4.3: Left: resonance absorption spectra S21 (horizontal axis) for different power
of the probe. Right: the S21 spectra at the lower (blue) and the higher VNA power
(orange).

Qubit spectroscopy

In this case we implement a two tones qubit spectroscopy [23]. The first tone is
given by a probe signal with a fixed power and a fixed frequency at the cavity
frequency ω

′
c. The second tone is a pump signal at the qubit frequency ω01, that

changes the state of the qubit between |0⟩ and |1⟩.
Again, for this measurements we rewrite the Hamiltonian but from the qubit

point of view:

Hq = h̄(ωc −
χ12

2
)b†b+

h̄

2
(ω01 + χ01 + 2χb†b)σz (4.7)

The state of the qubit σz and the photons number N = b†b inside the cavity
are multiplied, where N depends on the power of the probe signal [23]. On one
hand, as shown by Equation 4.5, the cavity frequency is influenced by the state
of the qubit: the frequency shifts by 2χ when the qubit changes from ground to
excited state. On the other hand, as shown in Equation 4.7, the qubit frequency
shifts by 2Nχ.

The figure 4.4(left) displays the transmission spectra as a function of the pump
frequency. These spectra are obtained with the VNA measuring the transmission
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near the dressed cavity frequency, for various pump frequency values.

The transmission peaks exhibit drops when the pump signal is resonant with
the qubit. Indeed, this induces Rabi oscillation of the qubit, which shifts the
cavity resonance. Moreover, the qubit frequency shifts depending on the number
of photons inside the cavity, and thus on the probe power. As a consequence, we
observe different drops corresponding to the various frequencies shift of the qubit.

The plot in Figure 4.4b show a section of Figure 4.4a, where we observe the
transmission drops. In general if the total dispersive shift is 2Nχ, the shift between
every drop is 2χ, in this way measuring the frequency difference between two
consecutive drops we are able to determine the value of the dispersive shift χ. We
calculate χ taking the frequency difference between all nearby peaks and taking the
mean value of this differences. The value of the dispersive shift is χ/2π = −3.42
MHz. We see this shift dependence of the qubit frequency on N , calculating the
energy level in the Hamiltonian:

En=0 =
h̄

2
(ω01 + χ01)

En=1 =
h̄

2
(ω01 + χ01 + 2χ)

En=2 =
h̄

2
(ω01 + χ01 + 4χ)

...

En=N =
h̄

2
(ω01 + χ01 + 2Nχ)

making the difference En − En=0 we find the total shift in frequency 2Nχ, while
making the difference between two nearby levels we find the frequency shift 2χ.

The first drop of figure 4.4(right) corresponds to the energy without terms
depending on b†b. Interpolating with a Lorentzian function the we obtain (ω01 −
χ01)/2π = 6.419 GHz with ω01 the non-shifted frequency of the qubit. Combining
χ with equation 4.6 we estimate χ12/2π =-13.6 ± 0.3 MHz. The coupling χ01/2π =
(χ + χ12

2
)/2π = -10.2 ± 0.2 MHz. The qubit frequency is ν01 = ω01/2π = 6.429

GHz.
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Figure 4.4: Left: spectra S21 as a function of the probe signal (vertical axis) and of the
pump. Right: a mean of the vertical spectra in right figure.

From the spectroscopy we are able to estimate other parameters from the
Hamiltonian 4.1. The value of ∆01/2π = ν01 − νc = −839 MHz and coupling
g01/2π =

√
χ01∆01/2π = 92.5 ± 1 MHz. The coupling for the 2nd and 3rd levels

is [15] g12/2π = g01
√
2/2π = 152 MHz and ∆12/2π = g212/(χ122π) = 1260 MHz.

The anharmonicity is given by

α = (∆01 −∆12)/2π = ν01 − ν12 = 421± 40 MHz (4.8)

The capacity of the qubit is given inverting the relation

hα = Ec =
e2

2C
(4.9)

therefore C = e2

2αh
= 46 ± 5 fF. We estimate also the critical current I0 and the

Josephson inductance L0 using the definitions of Φ0, Ec (equation 2.20) and Ej

(equation 2.7):

I0 = (2πEj)/Φ0 = 25 nA and L0 = Φ0/(2πI0) = 13 nH (4.10)

4.2.3 Time domain transmon characterization

Unlike the spectroscopy measurements where we constantly send signals and mea-
sure the scattering parameters, in time domain measurements we need to carefully
send signals to the system with accurate timing and proper duration. It is impor-
tant to define two different type of signals:

• The driving (or excitation) pulse: this pulse is sent at the qubit frequency
and it is needed to control the qubit. The pulse drive (excite) the qubit to
the eigenmode states or to a superposition of them.
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• The readout pulse: it is sent at the cavity frequency. This pulse does not
change the qubit state but it works on the cavity and allow us to measure
the readout, i.e. the I and Q signals.

The principal experiments for the time domain characterization are the Rabi oscil-
lation experiment, in which we determine the correct driving pulse for the qubit,
the Ramsey characterization to extract the decoherence time T2, and the T1 mea-
surement, to extract the lifetime of the qubit T1.

1

a)

b)

Figure 4.5: A scheme of (a) the T1 measurement and (b) the Ramsey measurements.

Rabi Characterization

From the Rabi characterization, we define the key parameters for qubit control.
This technique determines the appropriate driving pulse to transition the qubit

from |0⟩ to |1⟩ (a π-pulse), or into the superposition state |ψ⟩ = |0⟩+|1⟩
2

(a π
2
-

pulse), where |0⟩ and |1⟩ contribute equally. The driving pulse is characterized
by its amplitude, determined by the signal power, and its duration. The Rabi
measurements we conduct involve several steps, wherein we vary the pulse duration
while keeping the amplitude constant, or vary the amplitude while maintaining a
fixed pulse duration.

The steps are as follows:

1. Taking the qubit in the |0⟩ state.

2. Exciting the qubit for different time lengths at a fixed power (or different
power at the same time length) of the driving pulse.
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3. Waiting a time t.

4. Measuring the readout.

Examples of Rabi oscillations are shown in Figure 4.6 (up-right and down-
right), derived respectively from the Chevron plot and from the plot with different
powers, explained below. The Rabi oscillation readout is given by the amplitude
of the signal measured from the I and Q mixer outputs as AMP =

√
I2 +Q2 as

a function of the time. Every point of the graph is obtained by exciting the qubit
with the same pulse repeatedly and considering a mean value. This corresponds
to having a mean of the count of the qubit excites in |1⟩ or stays in |0⟩ at a precise
t after the pulse, seen as a probability of the qubit excitation. The amplitude is
interpreted as the ground state population Pg, where the higher value of AMP
corresponds to Pg = 1, and the lowest one to Pg = 0.

Figure 4.6 (upper-left) shows the Chevron plot of the Rabi measurements. This
is taken by measuring different Rabi oscillations for different pulse frequencies
with the same signal power. As we expected, no Rabi oscillations occur when
moving away from the qubit frequency. On the other hand, Figure 4.6 (lower-left)
represents the Rabi oscillations as a function of the signal power. These plots are
made by measuring the Rabi oscillation for different powers at the qubit frequency
ν = 6.419 GHz. Examining the oscillation, the correct pulse for driving the qubit
is chosen.

T1 measurements

From the Rabi analysis, we have obtained all the necessary information to control
and drive the qubit. The next step is to determine the lifetime of the qubit,
denoted as T1.

The experiment to estimate T1 involves the following steps, as illustrated in
Figure 4.5(a):

1. Exciting the qubit from the state |0⟩ to |1⟩ with a π-pulse.

2. Waiting for a certain delay time ∆t between the π-pulse and the readout
pulse, which varies for each repetition.

3. Measuring the ground state population.

Similar to the Rabi characterization, the ground state population Pg is derived
from the I and Q output signals.

The purpose of this measurement is to drive the qubit to the excited state and
observe its return to the ground state. The time taken for this return represents the
total lifetime of the qubit. Figure 4.7 illustrates an example of T1 measurements,
where we extract T1 by fitting the curve as an exponential decay. In this instance,
we find the value T1 = 8.68± 0.82 µs.
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Figure 4.6: (up-left): Chevron plot acquired with excitation power P = −93 dBm.
(down-left): Rabi oscillation dependence on the excitation tone power, with excitation
frequency = 6.419 GHz. On the right are examples of Rabi oscillation extracted from the
left graphs. The y-axis represents the amplitude of the signal, and the x-axis represents
the delay time between excitation pulse and qubit readout.

Figure 4.7: T1 measurements, with the state population on the y-axis and the delay
time after the π-pulse on the x-axis.
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Ramsey Characterization

Ramsey measurements are conducted to determine the decoherence time T2. For
this type of measurement, we drive the qubit with two π

2
-pulses separated by a

certain delay time ∆t, as illustrated in Figure 4.5(b). The steps for each repetition
are as follows:

1. Driving the qubit to the superposition state |ψ⟩ = |0⟩+|1⟩
2

with a π
2
-pulse.

2. Waiting for a certain delay time ∆t, which varies for each repetition.

3. Driving the qubit with another π
2
-pulse to return it to another eigenstate.

4. Measuring the ground state population Pg.

Similar to the Rabi experiment, Pg is obtained from the I and Q outputs.

After the first π
2
-pulse, the qubit begins to precess on the Bloch sphere until

the second π
2
-pulse brings it to another eigenstate. With a perfectly calibrated

driving pulse (at the same frequency as the qubit), we expect an exponential
decay due to decoherence with characteristic time T2, as shown in Figure 4.8(up-
left). If the driving frequency is detuned from the qubit frequency, we observe an
exponential decay convoluted with a sinusoid (Figure 4.8(down) and (up-right)).
By interpolating the graphs and averaging the values, we obtain an estimate of
T2 = 2.30± 0.11 µs.
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Figure 4.8: Ramsey oscillation for a pulse on resonance (up-left) and for detuned pulses.
The detuning between the driving frequency and the qubit frequency is (up-right) 200
kHz, (down-left) 400 kHz, (down-right) 600 kHz. The y-axis represents the ground state
population Pg, and the x-axis represents the delay time between the two π

2 -pulses.

From T1 and T2, we calculate the pure dephasing time Tφ using the relation:

T−1
φ = T−1

2 − T−1
1

2
. We obtain Tφ = 2.65 ± 0.15 µs. Table 4.1 summarizes the

results obtained from the qubit characterization.
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Variables Values

χ/2π[MHz] -3.41± 0.08
χ01/2π[MHz] -10.2 ± 0.2
χ12/2π[MHz] -13.6 ± 0.3
α[MHz] 421 ± 84

g01/2π[MHz] 92.5 ± 1
C[fF ] 46 ± 5
T1[µs] 8.68 ± 0.72
T2[µs] 2.30 ± 0.11
Tϕ[µs] 2.65 ± 0.15
L0[nH] 13 ± 2
I0[nA] 24.7 ± 1.3

Table 4.1: Summary of the experimental qubit-cavity parameters

4.3 DC characterization of Josephson junctions

In this section we describe the setup used to characterize Josephson junctions. In
particular, the aim is to find the critical current I0 of the JJ and prepare the setup
used to find the I0 of the transmon qubit in the next section.

The sample is a chip composed of several JJs that are set on the sample holder
as shown in Figure 4.9. The fabrication process and images of single junctions are
shown in Section 2.7.1.

In this case, we consider only 4 JJs. As shown in Figure 4.10, the junctions
are connected to the PCB of the sample holder using 10 wires, each bonded at
the head of a junction. Each wire corresponds to a different channel, totaling 10
channels, which are utilized to study the current (I) and the potential (V ) across
the junctions. Two wires are linked to one head of each junction j, corresponding
to channels V +

j and current I+j . Conversely, two wires are connected to the other
head and are common for all junctions, corresponding to channels V − and I−.

The holder PCB is connected to two USB-C ports and every pin of the USB-C
corresponding to a channel of the JJs. The measure of the JJs is made in two
different environments. The results are summed in Table 4.2.

• At low temperature (T = 15 mK), we study the I-V characteristic in order to
measure the critical current Ic, the retrapping current Ir, the critical voltage
Vc and make an estimation of the normal resistance R0.

• At room temperature (T = 300 K), we measure the normal resistance R0.
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Figure 4.9: The image shows the chip with the measured junctions placed on the sample
holder. There are a total of 8 USB-C connectors on the sample holder, but we only use
the two in the middle on the left side.

Low temperature measurements

The experimental setup at low temperature is shown in Figure 4.11 (left). The
measurements are made by biasing the JJs with a DC current, provided by a
waveform generator (KEYSIGHT 33500B) set at a frequency of f = 62.8 Hz. At
room temperature, a resistance of R = 1 kΩ is set to measure the bias current.
The sample holder with the junctions is placed inside the cryostat at the 10 mK
plate. The USB ports are coupled with two PCBs that connect the junctions to
the external environment. The input signal is filtered at 300 K and 4 K using two
low-pass filters with a 100 kHz cut-off frequency. The output signal is amplified
by two Stanford Preamplifiers and acquired with a 16-bit ADC board at a rate of
1 MS/s.

The value of the current is calculated by measuring the voltage across the
resistance. It is given by I = ∆V

R
, where ∆V is the voltage difference across the

resistance. For every junction j, the current flows from the channel I+j to I−,

and the voltage is measured as the difference between potential at V +
j and V −

channels.

For every junction, we measure the I-V characteristics several times to perform
a statistical analysis. From each cycle, we extract the principal parameters. Since
the IVC is symmetric, we study the parameter values in the first quarter of the
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Figure 4.10: Image of the junctions and pin connections. The four JJs are connected
via 10 bondings from the junctions to the PCB of the sample holder. Each bonding
corresponds to a different channel.

graph and the absolute values of the parameters in the third quarter to increase
the statistics. The IVC of the second junction is shown in Figure 4.13. The I and
V signals, along with a single cycle of the signal as a function of time, are shown
in Figure 4.12.

In Figures 4.13 and 4.12, the blue crosses/lines represent the critical current
value I0, the red ones represent the retrapping current Ir, and the green ones
represent the critical voltage Vc. Referring to Figure 4.13, the values of I0 and Ic
are determined when the voltage exceeds a certain threshold, defined as 200 µm,
located in the middle of the voltage range between zero and the maximum value
of the voltage. The value of Vc is identified as the minimum in the upper part,
aimed at avoiding self-heating which could inflate the actual value.

The normal resistance R0, depicted by the yellow line, is calculated as the ratio
between the voltage difference and the current difference between the points of
maximum and minimum potential, expressed as:

R0 =
Vmax − Vmin

Imax − Imin

(4.11)

The parameter values are summarized in Table 4.2.
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Figure 4.11: Experimental setup at low temperature (left) and at room temperature
(right).

Room temperature measurements

At room temperature, the 4-probe measurements are conducted using the Keithley
2010 Multimeter. The experimental setup at low temperature is depicted in Figure
4.11(right). The junctions are biased by a DC current IDC , the voltage difference
across the junction, ∆V = V+−V− is measured with two cables specially designed
to ensure stable contact from pins to banana entries. The ratio between these
values yields the normal resistance of the junctions, R0 = ∆V

IDC
. The values of R0

are listed in the second-last column of Table 4.2. Except for the first junction, the
normal resistance R0 measured at room temperature closely matches the resistance
measured at low temperature.

We estimate the value of the critical current of the junction from the resistance
measured at room temperature with the Ambegaokar-Baratoff formula. It is given

by Equation 2.4 at T = 0: I0(0) =
π∆(0)
2eR0

= π
4
Vc

R0
. The value of Vc does not depend

on the oxidation of the JJ and it is nearly constant for junctions of the same
dimension. Considering Vc = 340 µV, an estimation of the I0 for each junction is
reported in the last column of Table 4.2. Except for the first junction, the values
are compatible.

I0[µA] Ir[µA] Vc[µV ] R
(15mK)
0 [Ω] R

(300K)
0 [Ω] Iest0 [µA]

JJ1 3.0 ± 0.2 0.38 ± 0.07 328 ± 3 73 ± 1 28 9.5
JJ2 2.9 ± 0.2 0.28 ± 0.06 340 ± 2 82 ± 1 87 3.1
JJ3 1.7 ± 0.1 0.03 ± 0.01 340 ± 3 114 ± 3 113 2.4
JJ4 1.8 ± 0.1 0.11 ± 0.03 348 ± 3 124 ± 2 115 2.3

Table 4.2: Principal parameters estimated of the Josephson junctions
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Figure 4.12: (upper) Total current and voltage signal. (lower) A single cycle of the I
and V signal. This figure is used to estimate the principal values of the JJ. The value of
the voltage is 10×, this is done for visual reason, to compared it with the current signal.

Figure 4.13: I-V charateristics for the second JJ. The lines represent the value of the
parameters on the positive region. The parameters extracte are reported in table 4.2.
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4.4 DC characterization of the circular qubit

In this section, we describe the DC current measurement with the new circular
qubit discussed in Section 2.7.3 and fabricated at INFN-CNR. The details of the
dimensions and parameters are listed in Table 3.2. The aim of this measurement is
to determine the value of the critical current of the qubit I0, important to estimate
the resonant frequency of the qubit. The setup is identical to that described in
Figure 4.11 (left), with the addition of a filter at 10 mK.

Two qubits are placed on the sample holder, and the conductive pads are
bonded to the holder with 8 connections: two for each pad of the two qubits.
These connections are used for the 4-wire measurements of current for current
I and potential V . Specifically, I+1 , V

+
1 , I−1 , and V −

1 represent the current and
potential of the upper pad (+) and the bottom pad (-) for the first qubit. Similarly,
I+2 , V

+
2 , I−2 , and V

−
2 are the connections for the second qubit. The I and V are

linked to two USB-C connections on the sample holder, one for each qubit. The
sample holder is placed on the mixing chamber at 10 mK in the cryostat. The
USB-C ports are connected to two PCBs; the wires of the PCBs are connected
to the filter placed at the 10 mK plate of the cryostat. Afterward, the device is
connected to the ADC boards through twisted and coaxial cables. An image of
the devices is shown in Figure 4.14, and details about the connections are shown
in Figure 4.15.

Regarding the JJ, the current I is measured by taking the potential difference
across the resistance R = 1 kΩ and making the ratio between this value and the
resistance. The device is biased with the current through the I channels, and the
measurement of the potential difference across each qubit is made through the V
channels.

This measurements highlighted a problem in the JJ fabrication. In fact, one
qubit behaves as a short circuit and the second as an open one. The chip fabrica-
tion will be repeated soon as well as the critical current characterization. Moreover,
once the we will have working devices, the characterization at room temperature
will also be repeated, this will allow us to give a fast feedback to tune the fabri-
cation process, in particular the oxidation time, in order to fabricate the JJs with
the desidered critical current, and therefore the qubit resonating frequency of the
design.
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Figure 4.14: (a) The sample holder of the qubits in which USB-C connectors for the
PCBs are mounted. (b) The PCBs connected to the holders USB. Wires connect the
PCBs to the 10 mK filter. The star on figure a) and on the PCBs is used to identify the
correct position of the PCBs. (c) and (d) show the bonding between the qubit pads and
the holder, (c) connected USB1 and (d) to USB2. (e) The connection between the PCBs
and the 10 mK filter. In figures (c) and (d), we define the lines that connect the pads to
the sample holder starting counting from the left. More details about connections are
provided in Figure 4.15.
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Figure 4.15: The qubits are bounded to the PCB of the sample holder with a precise line,
counted from the left of the holder. The lines are connected to two USB-Cs connectors,
one for every qubit. The USB-Cs are coupled with two PCBs that relates the device to
the external environment. (f) The table that defines the connections. The first column
refers to the channel, the second column defines the correlation between the lines of
the of sample holder PCB with the ports of the USB1 and USB2. The scheme of the
connection of the USB pins and the lines of the sample holder is represented in (g),
the green rectangles correspond to the USB pins and the numbers refer to the lines.
The third column refers to the corresponding port of the PCB1 and PCB2 coupled
respectively to USB1 and USB2. The figure (i) pictured the scheme of the PCB ports.
The information of the third column is the number of the PCB (PCB1 or PCB2) and
the number of the pin of the PCB, as shown in (i). The star define what side of the
PCB we consider. The PCB is after connected to the 10 mK filter. Figure (h) is a real
scheme of a USB port.
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Chapter 5

Conclusion

In this thesis work, we provide a complete characterization of the transmon qubit
fabricated in Abu Dhabi, effectively extracting the parameters that describe it
with a qubit and cavity spectroscopy and a time domain characterization. These
parameters include the capacity between the pads Cexp = 46 ± 5 fF, the critical
current of the junction Iexp0 = 25±1 nA, the qubit-cavity coupling gexp01 /2π = 93±1
MHz, and the lifetime T exp

1 = 8.7± 0.7 µs.

After, we develop a method to extract similar information using electromag-
netic simulation with ANSYS software. Specifically, we investigate electromagnetic
losses on the device that decrease the coherence of the qubit, providing a quan-
titative description by calculating the sum of participation ratios contributions
from different spatial regions. The parameters extracted from simulations are the
pads capacity Csim = 56 fF, the qubit-cavity coupling gsim01 /2π = 97 MHz, and the
lifetime T sim

1 = 42 µs.

We compare the parameters extracted from the experimental analysis with
the simulations, noting compatibility in the values of capacitance and coupling
constant, while the simulated lifetime differs substantially. This discrepancy may
originate from an underestimation of the participation ratios due to limitations
in our numerical mesh resolution. Currently, we are exploring potential solutions
proposed in [18] and [21].

Starting with the Abu Dhabi qubit design, we modify the shape and size of
the pads and explore other simple geometric shapes. Analyzing the distribution of
the electromagnetic field, we observe significant field concentration at the corners
of the pads, leading to increased total electromagnetic losses. To address this, we
smooth the corners of the pads and add non-straight lines to increase the area,
achieving a better distribution of the field.

A geometry with two circular pads is selected. The pads are circles with a
radius of 500 µm and a distance of 243 µm between the circumference of the pad
and the center of the Josephson junction. The junction has an inductance L = 7.8
nH, corresponding to a critical current Ic = 42 nA. The total capacity is C = 93 fF,
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and the qubit-cavity coupling is g01/2π = 355 MHz. The relaxation time is T1 = 63

µs, higher than the simulated time for the Abu Dhabi qubit (T
(Abu Dhabi)
1 = 42 µs).

The larger pad dimensions allow for greater distribution of the electromagnetic
field, resulting in a significant reduction in losses. The new design presents a loss
of P = 0.3 ·P (Abu Dhabi). However, the results for the losses are still imprecise, and
we are currently adjusting the mesh resolution to improve the accuracy of the loss
values.

A parallel study is also conducted by implementing DC measurements to ex-
tract the principal parameters from four Josephson junctions fabricated at CNF-
IFN in Rome. We extract values from the IVC of the junctions, and the results are
shown in Table 4.2. We find critical current values of a few µA, critical potential
of hundreds of µV, and junction normal resistance of tens of ohms. We compare
the resistance value with a 4-probe measurement made at room temperature and
find good agreement for 3 of the 4 junctions, making this a reliable method for
characterizing large junctions at room temperature.

The same measurements are made for two qubits fabricated at CNR-IFN in
Rome with the circular design proposed, highlighting a problem in the JJ fabrica-
tion: one qubit behaves as a short circuit and the second as an open one. The chip
fabrication will be repeated soon as well as the critical current characterization.
The aim is to give a fast feedback to tune the fabrication process and produce
JJs with the desidered critical current and as a consequence, the qubit resonating
frequency.
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