THE EUROPEAN EXPERIMENTAL LANDSCAPE OF DIRECT DETECTION OF AXION DARK MATTER

CLAUDIO GATTI, LABORATORI NAZIONALI DI FRASCATI - INFN

- Properties of Axions
- Axion Limits
- Non DM Experiments
- Dark Matter Axion Searches in Europe
 - a) Resonant Searches (haloscopes)
 - I. QUAX
 - II. KLASH
 - III. RADES
 - b) Broadband Searches
 - I. DISH Antenna (BRASS)
 - II. Dielectric Haloscope (MADMAX)
 - c) NMR
 - I. CASPEr
- Prospects for Signal Amplification (an INFN perspective)

OUTLINE

AXIONS PROPERTIES

Created by Agarunov Oktay-Abraham from Noun Project

Axion Mass

Interaction with gluon field
$$\mathcal{L} = \left(\frac{a}{f_a} - \theta\right) \frac{\alpha_s}{8\pi} G^{\mu\nu a} \tilde{G}^a_{\mu\nu} \qquad \begin{array}{l}a \text{ axion field}\\f_a \text{ PQ breaking energy scale}\\G \text{ gluon field}\end{array}$$

At temperature T= Λ_{QCD} non perturbative QCD effetcs generate an axion mass

If $f_a \sim f_{ew} = 100 \text{ GeV}$, as in original PQ model, then $m_a \sim 100 \text{ keV}$ and $BR(K^+ \rightarrow \pi^+ a) \sim 10^{-5}$ This is ruled out by measurements $BR(K^+ \rightarrow \pi^+ \text{ nothing}) < 10^{-8}$

4

Axion Interaction with Matter

Axion interaction with matter described by an effective lagrangian

$$\mathcal{L} = i\frac{g_d}{2}a\left(\bar{N}\sigma_{\mu\nu}\gamma^5N\right)F^{\mu\nu} + i\frac{g_{aNN}}{2m_N}\partial_{\mu}a\left(\bar{N}\gamma^{\mu}\gamma^5N\right) + i\frac{g_{aee}}{2m_e}\partial_{\mu}a\left(\bar{e}\gamma^{\mu}\gamma^5e\right) + g_{a\gamma\gamma}aE \cdot B$$

Casper Electric Experiment	Casper Wind Experiment	Quax-ae Experiment	Elioscopes Haloscopes LSW
•	•		LSVV

Axion Lifetime

$$g_{a\gamma\gamma} = \frac{\alpha_{em}}{2\pi f_a} \left(\frac{E}{N} - 1.92(4)\right)$$

The effective coupling is model dependent: E/N=0 KSVZ model E/N=8/3 DSFZ model

Coupling inversely proportional to PQ breaking scale

$$\Gamma_{a \to \gamma\gamma} = \frac{g_{a\gamma\gamma}^2 m_a^3}{64\pi} = 1.1 \times 10^{-24} s^{-1} \left(\frac{m_a}{eV}\right)^5$$

Light axion are stable particles

LIMITS ON AXIONS

Created by Joey Hiller from the Noun Project

Limits

Stellar physics: Primakoff process in stars $\gamma Ze \rightarrow a Ze$. Constraints on stellar lifetime or energy-loss rates: Sun, HB.

Cosmology:

No DM $a \rightarrow \gamma\gamma$ decays seen in the visible region from galaxies with telecopes. Similar searches with X-rays and extragalactic background light (EBL) or H ionization.

Ringwald et al. PDG 2017 8 Irastorza Redondo arxiv:1801.08127

NON DARK MATTER EXPERIMENTS IN EU Created by mareerat jai kaev

Axion Conversion in a Magnetic Field

10

Light-shining-through Wall Experiments

Experiment	status	B(T)	L(m)	P _{in} (W)	G _{aγγ} (GeV¹)
ALPS-I	done	5	4.3	4	5×10 ⁻⁸
OSQAR	ongoing	9	14.3	18.5	3.5×10 ⁻⁸
ALPS-II	In preparation	5	100	30	2×10-11
STAX	concept	15	0.5	10 ⁵	5×10-11
JURA	concept	13	480	-	10-12

Elioscopes

Axion produced in the core of the Sun from Primakoff conversion with typical energy few keV.

Experiment	status	B(T)	L(m)	A(cm²)	G _{αγγ} (GeV¹)
CAST	ongoing	9	9.3	30	6.6×10-11
IAXO	In design	2.5	22	2.3×10 ⁴	4×10 ⁻¹²
Baby Iaxo	In design	2.5	10	0.8×10 ⁴	2×10-11
TASTE	Concept	3.5	12	30	2×10-11

12

Sikivie Phys. Rev. D 32, II (1985)

Other Searches

PVLAS: Polarizazion Experiment

PVLAS Experiment Eur. Phys. J. C (2016) 76:24

 $Quax-g_pg_s: 5^{th}$ force experiment

NIM A842 (2017) PLB 773 (2017)

DIRECT SEARCH OF AXION DARK MATTER IN EU

Created by ProSymbols from the Noun Project

Axion Dark Matter

Local Dark Matter density

$$\rho \simeq 0.3 GeV/cm^3$$
Axion density

$$n_a \simeq 3 \times 10^{12} \left(\frac{100 \mu eV}{m_a}\right) 1/cm^3$$
Axion-Earth relative speed

$$\beta_a \sim 10^{-3} \qquad \hbar \omega \simeq m_a c^2$$
Treat axion as a classical field

$$a = a_0 \cos \left(\omega t - kx\right) \quad a_0 = \sqrt{\frac{n_a \hbar^3}{m_a c}}$$

Created by James Christopher from the Noun Project **RESONANT SEARCHES**

Sikivie Haloscope

In presence of a strong magnetic field, cavity modes are excited by a resonant axion field

$$\nabla^2 E - \partial_t^2 E = -g_{a\gamma\gamma} B_0 \partial_t^2 a$$

$$P_{\rm sig} = \left(g_{\gamma}^2 \frac{\alpha^2}{\pi^2} \frac{\hbar^3 c^3 \rho_a}{\Lambda^4}\right) \times \left(\frac{\beta}{1+\beta} \omega_c \frac{1}{\mu_0} B_0^2 V C_{mnl} Q_L\right)$$

 $\boldsymbol{\beta}$ antenna coupling to cavity

V cavity volume

 C_{mnl} mode dependent factor about 0.6 for TM010 Q_L cavity "loaded" quality factor

Sikivie Phys. Rev. D 32,11 (1985)

QUAX: Quest for Axions

$$\mathcal{L} = i\frac{g_d}{2}a\left(\bar{N}\sigma_{\mu\nu}\gamma^5N\right)F^{\mu\nu} + i\frac{g_{aNN}}{2m_N}\partial_{\mu}a\left(\bar{N}\gamma^{\mu}\gamma^5N\right) + i\frac{g_{aee}}{2m_e}\partial_{\mu}a\left(\bar{e}\gamma^{\mu}\gamma^5e\right) + g_{a\gamma\gamma}aE \cdot B$$

18

QUAX-ae Result with Ferromagnetic Axion Haloscope at $m_a = 58 \mu eV$

Experimental Setup	
B [T]	0.5
N. of GaYIG Sphere (diameter =1 mm)	5
n _s [spin/m ³]	2.1×10 ²⁸
τ _{min} [μs]	0.11
Frequency [GHz]	13.98
Cu-cavity Q (mode TM110)	50 000
T _{cavity} [K]	
T amplifier [K] (HE	

EPJC (2018) 78:703

19

QUAX-ay Result with Superconductive Resonant Cavity at $m_a = 37.5 \ \mu eV$

Experimental Setup	
В [Т]	2
Frequency [GHz]	9
NbTi cavity Q (mode TM010)	400,000
T _{cavity} [K]	5.0
T amplifier [K] (HEMT)	11

$$g_{a\gamma\gamma} < 1.03 \times 10^{-12} \,\mathrm{GeV}^{-1}$$

Phys. Rev. D 99, 101101(R) (2019)

QUAX-ae Result with Quantum-Limited Ferromagnetic Haloscope

Experimental Setup	
B [T]	0.5
N. of GaYIG Sphere (diameter =2.1 mm)	10
n _s [spin/m³]	2.1×10 ²⁸
τ _{min} [μs]	0.1
Frequency [GHz]	10.7
Cu-cavity Q (mode TM110)	50,000
T _{cavity} [mK]	90
T amplifier [K] (JPA)	0.5-1

Phys. Rev. Lett. 124, 171801 (2020)

QUAX-ay Reached the Sensitivity to QCD Axion m_a =40 μ eV

22

High Quality Factor Dielectric Cavities

High quality factor photonic cavity

Review of Scientific Instruments 91, 094701 (2020)

High quality factor photonic resonator with hollow dielectric cylinders

10.1016/j.nima.2020.164641

QUAX 2021-2025

	LNF	LNL
Magnotic field	9 T	14 T
Magnetic neid Magnet longth		14 I
Magnet length	40 cm	30 cm
Magnet inner diameter	9 cm	12 cm
Frequency range	8.5 - 10 GHz	9.5 - 11 GHz
Cavity type	Hybrid SC	Dielectric
Scanning type	Inserted rod	Mobile cylinder
Number of cavities	7	1
Cavity length	0.3 m	0.4 m
Cavity diameter	25.5 mm	58 mm
Cavity mode	TM010	pseudoTM030
Single volume	$1.5 \cdot 10^{-4} \text{ m}^3$	$1.5 \cdot 10^{-4} \text{ m}^3$
Total volume	7⊗0.15 liters	0.15 liters
Q_0	300 000	1 000 000
Single scan bandwidth	630 kHz	30 kHz
Axion power	$7\otimes 1.2\cdot 10^{-23}~{\rm W}$	$0.99 \cdot 10^{-22} \text{ W}$
Preamplifier	TWJPA/INRIM	DJJAA/Grenoble
Operating temperature	30 mK	30 mK
Performance for KSV	Z model at 95% c.	l. with $N_A = 0.5$
Noise Temperature	0.43 K	0.5 K
Single scan time	3100 s	69 s
Scan speed	18 MHz/day	40 MHz/day
Performance for KSV	Z model at 95% c.	l. with $N_A = 1.5$
Noise Temperature	0.86 K	1 K
Single scan time	12500 s	280 s
Scan speed	4.5 MHz/day	10 MHz/day

2021	2022	2023	2024	2025
Assembly of haloscopes at LNL and LNF				

Data Taking

Scan in range 8.5 - 11 GHz

KLASH

- KLASH KLoe magnet for Axions SearcH
- Proposal of a large Haloscope at LNF
- Search of galactic axions in the mass range 0.3-1 μeV
- Large volume RF Cavity (22 m³)
- Moderate magnetic field (0.6 T)
- Copper rf cavity Q~600,000
- T 4.5 K

KLOE magnet

Experiment	ω B²V Q_L (rad T²m³/s) (×10¹⁵)		
The KLASH	I		
ADMX	4		
HAYSTAC	0.05		

KLASH

- KLASH KLoe magnet for Axions SearcH
- Proposal of a large Haloscope at LNF
- Search of galactic axions in the mass range 0.3-1 μeV
- Large volume RF Cavity (22 m³)
- Moderate magnetic field (0.6 T)
- Copper rf cavity Q~600,000
- T 4.5 K

Experiment	$ω B^2 V Q_L (rad T^2m^3/s) (×10^{15})$	
The KLASH	I	Istituto Nazionale di Fisica Nucleare
ADMX	4	
HAYSTAC	0.05	

Finuda magnet

KLASH CDR arxiv:1911.02427

RADES: Relic Axion Detector Exploratory Setup

Insert resonant cavities (8.5 GHz) inside the dipole magnet of CAST experiment. In the long term take data in the (Baby) IAXO magnet.

Design cavities and couplings to maximize coupling to axion field

Arxiv:2002.07639

RADES: Relic Axion Detector Exploratory Setup

Created by Eucalyp

BROADBAND SEARCHES

Axion Induced e.m. Radiation at Interface

When an interface between different dielectric media is inside a magnetic field, the oscillating axion field acts as a source of electromagnetic waves, which emerge in both directions perpendicular to the surface.

 $E_{\parallel,1} = E_{\parallel,2}$ Faraday $H_{\parallel,1} = H_{\parallel,2}$ Ampere

BRASS Broadband Radiometric Axion Searches

- Broadband acquisition: 16 GHz bandwidth
- Photon flux $B^2 \times Disk Area$
- BRASS-6: Disk diameter 2m; B=0.5T
- Experiment in the preparatory stage for data taking

Movable dielectric disks in front of a metallic mirror exploiting constructive interference and resonant enhancements of the radiation emitted at the many interfaces.

Status Report arxiv:2003.10894 XIAOYUE LI talk at Axion Cosmology MIAPP 2020

Proof of principle setup: 5 sapphire disks with a diameter of 20 cm mounted in front of a copper mirror. Reflections measured with a vector network analyzer (VNA).

2020-202

2021-2022

Prototype construction

Tiling of LaAlO₃ disk: **ε=24** $\tan\delta = \text{few} \times 10^{-5}$

Madmax prototype: 20 disks of diameter 30 cm. Cryostat 750 mm diameter inside MORPURGO (1.6 T, L=1m) magnet at CERN.

2022-2035

NMR

Created by Jeff Portaro from the Noun Project

CASPEr Cosmic Axion Spin Precession Experiment

- CASPERr Electric detects axion-induced electric dipole oscillations in ferroelectric samples
- CASPEr Wind detects axion-induced oscillations of nuclear spin

JGUU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Stockholm University

arXiv:1711.08999v A.Wickenbrock Talk at Patras 2019 Freiburg

CASPEr Cosmic Axion Spin Precession Experiment

- CASPERr Electric detects axion-induced electric dipole oscillations in ferroelectric samples
- CASPEr Wind detects axion-induced oscillations of nuclear spin in liquid Xenon

Casper wind Xe in preparation

arXiv:1711.08999v

A. Wickenbrock Talk at Patras 2019 Freiburg

Phys. Rev. Lett. 122, 191302

Stockholm University

HIM

Helmholtz-Institut Main

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

Tentative Timeline of EU Experiments

SIGNAL AMPLIFICATION (AN INFN PERSPECTIVE)

Created by Komkrit Noenp

40

TWJPA

Travelling Wave Josephson Parametric Amplifiers amplify microwave signal over a broad range adding the minimum noise set by quantum mechanics. Two devices developed in Eu with 3-wave and 4-wave mixing:

Detector Array Readout with Travelling Wave AmplifieRS project recently approved by INFN

SUPERGALAX

Network of N interacting superconducting qubits

CNR (IT, PI, exp)

INRIM (IT, exp)

INFN (IT, axion exp)

KIT (DE, exp)

Leibniz IPHT (DE, exp)

RUB (DE theory)

LU (UK, theory)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 863313. Grant amount 2 456 232.50 Euro. $\vec{E} = Single microwave photon with frequency <math>\omega$ $\vec{E} = Single microwave photon with frequency <math>\omega$ $\vec{E} = Single mi$

Objective: Develop a single microwave photon detector for axion search in QUAX experiment with an array of SC qubits.

https://supergalax.eu

Nanowire Tes For Single Photon Detection

Development of a TES nanowire sensitivie to 100-200 GHz single photons

Lenght	I.5 μm
Width	100 nm
t _{Al}	10.5 nm
t _{Cu}	15 nm

С	5×10 ⁻²⁰ J/K
G	5×10 ⁻¹⁵ W/K
σ_{v}	100-200 GHz
NEP	50 zW/√Hz

F. Paolucci et al arXiv:2007.08320 project

Thank You